

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 109

1. If $a=rac{h}{4\pi^2me^2}$ then correct expression for calculate of

the first orbit of hydrogen atom is

A. $\sqrt{4}\pi h \alpha$

 $\mathrm{B.}\,\sqrt{2}\pi h\alpha$

C. $\sqrt{4h^2}\pi\alpha$

D. Both A and C

Answer: D

Watch Video Solution

2. To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorus acid, the volume of 0.1 M aqueous *NaOH* solution required is

A. 20 mL

B. 30 mL

C. 40 mL

D. 60 mL

Answer: C

Watch Video Solution

3. Name the end product in the following series of reactions

 $C_6H_5COOH \stackrel{NH_3}{\longrightarrow} P \stackrel{\Delta}{\longrightarrow} Q \stackrel{P_2O_5}{\longrightarrow} R \stackrel{LiAlH_4}{\longrightarrow} S$

A. Aniline

B. Benzylamine

C. Acetonitrile

D. Acetamide

Answer: B

Watch Video Solution

4. Which one of the following relationships when graphed does not give a straight line for helium gas?
I. K.E. and T at constant pressure and volume
II. P v/s V at constant temperature for a constant mass
III. V v/s 1/T at constant pressure for a constant mass

A. III

B. I and III

C. II

D. II and III

Answer: D

5. Which of the following structures is the correct Haworth

representation of D - aldose?

Н

OH∕ │∕CH₂OH

óн

CH₂OH

ÓН

ОH,

C.

D.

Answer: B

0

но

О

óн

-vvv-OH

₩О₩

6. N_2 and O_2 are converted into monocations, N_2^+ and O_2^+ respectively. Which of the following is wrong?

A. 3, 4

B. 1, 4

C. 1, 3, 4

D. 1, 2, 3, 4

Answer: C

7. Consider the following reactions in which all the reactants and the products are in gaseous state.

 $2PQ \Leftrightarrow P_2 = Q_2, K_1 = 2.5 imes 10^5$ $PQ+1/2R_2 \Leftrightarrow PQR, K_{92}ig) = 5 imes 10^{-3}$ The value of K_2 for the equilibrium $1/2P_2 + 1/2Q_2 + 1/2R_2 \Leftrightarrow PQR,$ is A. $3 imes 10^3$ B. 6×10^{3} C. 1.0 imes 10 $^{-5}$ D. $5 imes 10^{-3}$

Answer: C

8. The first $(\Delta_i H_1)$ and second $(\Delta_i H_2)$ ionization enthalpies $(\operatorname{in} \mathrm{kJ} \operatorname{mol}^{-1})$ and the electron gain enthalpy $(\Delta_{eg} H) (\operatorname{in} \mathrm{kJ} \operatorname{mol}^{-1})$ of the elements I, II, III, IV and V

are given below

Element	$\Delta_{ m i} { m H}_1$	$\Delta_{ m i} { m H}_2$	$\Delta_{\rm eg} {\rm H}$
I	520	7300	- 60
	419	3051	-48
	1681	3374	-328
IV	1008	1846	-295
V	2372	5251	+48

the least reactive non - metal and the most reactive metal

of these are respectively

A. IV and V

B. II and V

C. V and III

D. V and II

Answer: D

Watch Video Solution

9. Equal volumes of 0.1 M NaCl and 0.06 M $CaCl_2$ solutions are separated by a semi - permeable membrane in container. For this system, choose the correct answer

- A. Water flows from NaCl solution towards $CaCl_2$ solution
- B. There is no movement of any solution across the

membrane

C. Osmotic pressure of 0.1 M NaCl is lower than the

osmotic pressure of $CaCl_2$ (Assume complete

dissociatio)

D. Water flows from $CaCl_2$ solution towards NaCl

soltuion

Answer: D

Watch Video Solution

10. The correct match between Item I and Item II is

ltem l	Item II
(1) Norethindrone	(P) Anti-biotic
(2) Ofloxacin	(Q) Anti-fertility
(3) Equanil	(R) Hypertension
(4) Aspirin	(S) Analgesics

A. 1 - R, 2- R, 3 - S, 4 - Q

B. 1 - Q, 2 - R, 3 - R, 4 - S

C. 1 - Q, 2 - P, 3 - R, 4 - S

D. 1-Q, 2-P, 3-R, 4-S

Answer: D

11. The increasing order of the pK_a value of the following

compounds is

A.
$$C < B < A < D$$

B. $B < C < A < D$
C. $D < A < C < B$
D. $B < C < D < A$

Answer: B

12. AgCl dissolved in excess of NH_3 , KCN and $Na_2S_2O_3$ solutions the complex produces ions

A.

$$ig[Ag(NH_3)_4ig]^{2+}, ig[Ag(CN)_2ig]^{3-}, ext{ and } ig[Ag_2(S_2O_3)_2ig]^{2-}$$
B.

$$ig[Ag(NH_3)_2ig]^+, ig[Ag(CN)_2ig]^-, ext{ and } ig[Ag(S_2O_3)_2ig]^{3-}$$

C. $ig[Ag(CN_3)_2ig]^+, ig[Ag(CN)_2ig]^3, ext{ and } ig[Ag(S_2O_3)_2ig]^{2-}$

D.

$$ig[Ag(NH(3))_2ig]^{2\,+}, ig[Ag(CN)_2ig]^{3\,-} \ ext{ and } ig[Ag(S_2O_3)_2ig]^{2\,-}$$

Answer: B

13. Considered the following statements :

- 1. Zeolites are aluminosilicates
- 2. Aluminium can occupy two adjacent sides in zeolites.

Which of the following statements is correct ?

A. 1, 2 B. 2, 4

C. 1, 2, 3

D. 1, 2, 4

Answer: D

14. Identify the final product 'E' in the given sequence of

reactions here

Answer: D

Watch Video Solution

15. The flocculating power of the given ions for the specified colloidal sols will be such that:

Arsenic sulphide sol	Ferric hydroxide sol
(a) $[Fe(CN)_6]^{4-} > PO_4^{3-} > SO_4^{2-} > Cl^{-}$	$Al^{3+} > Ba^{2+} > Na^{+}$
(b) $Al^{3+} > Ba^{2+} > Na^+$	$[Fe(CN)_6]^{4-} > PO_4^{3-} >$
	$SO_4^{2-} > Cl^-$
(c) $Na^+ > Ba^{2+} > Al^{3+}$	$Cl^{-} > SO_4^{2-} > PO_4^{3-} >$
	$[Fe(CN)_6]^{4-}$
(d) $Cl^{-}>SO_{4}^{2-}>PO_{4}^{3-}>[Fe(CN)_{6}]^{4-}$	$Na^+ > Ba^{2+} > Al^{3+}$

Arsenic sulphoid	Ferric hydroxide	
sol	sol	
${f [Fe(CN)_6]^{4-}}\ > PO_4^{3-}\ > SO_4^{2-} > Cl^-$	$\begin{array}{l} \mathrm{Al}^{3+} > \mathrm{Ba}^{2+} \\ > \mathrm{Na}^{+} \end{array}$	

A.

В

Arsenic sulphoid	Ferric hydroxide
sol	sol
$egin{array}{llllllllllllllllllllllllllllllllllll$	$[Fe(CN)_6]^{4-}$
	$> PO_4^{3-}$
	$> SO_4^{2-} > Cl^{-}$

Arsenic sulphoid	Ferric hydroxide
sol	sol
$egin{array}{l} { m Na}^+ > { m Ba}^{2+} \ > { m Al}^{3+} \end{array}$	$Cl^- > SO_4^{2-}$ > PO_4^{3-} > $[Fe(CN)_e]^{4-}$

 $\begin{array}{|c|c|c|c|} \hline \textbf{Arsenic sulphoid} & \mbox{Ferric hydroxide} \\ \hline \textbf{sol} & \mbox{sol} \\ \hline Cl^- > SO_4^{2-} & \\ > PO_4^{3-} & \\ > [Fe(CN)_6]^{4-} & > Al^{3+} \\ \hline \textbf{D}. \end{array}$

Answer: B

С.

16. Among (a) -(d) the complexes that can display geometical isomerism are :

- (a) $\left[Pt(NH_3)_3 Cl
 ight]^+$
- (b) $\left[Pt(NH_3)Cl_5
 ight]^-$
- (c) $\left[Pt(NH_3)_2 Cl(NO_2) \right]$
- (d) $\left[Pt(NH_3)_4 CIBr
 ight]^{2+}$

A. 4 and 1

B. 2 and 3

C. 3 and 4

D.1 and 2

Answer: C

Watch Video Solution

17. The correct match between Item 'I' and Item 'II' is

Item I (Compound)	Item II (Reagent)
(1) Lysine	(P) 1-naphthol
(2) Furfural	(Q) ninhydrin
(3) Isopropyl alcohol	(R) $\rm KMnO_4$
(4) Vinyl benzene	(S) Ceric ammonium
(Styrene)	Nitrate

A. 1-R, 2-R, 3-Q, 4-S

B. 1-Q, 2-P, 3-R, 4-S

C. 1-Q, 2-R, 3-S, 4-P

D. 1-Q, 2-P, 3-S, 4-R

Answer: D

Watch Video Solution

- **18.** Mark the correct statements(s)
- (1) Manganeses exhibits +7 oxidation state
- (2) Zinc forms coloured ions
- (3) $[CoF_6]^{3-}$ is diamagnetic
- (4) Sc forms +4 oxidation state
- (5) Zn exhibits only +2 oxidation state

A. (i), (ii) and (iii)

B. (ii), (iii) and (iv)

C. (i), (iii) and (iv)

D. (i), (iii) and (v)

Answer: B

19. Arrange following compounds in decreasing order of rate of electrophilic substitution.

A. i > ii > iii > iv

B. iii > iv > ii > i

 $\mathsf{C}.\,i>iv>ii>iii$

D. i > ii > iv > iii

Answer: C

Watch Video Solution

20. The given plots represent the variation of the concentration of a reactant R with time for different reactions (i) and (ii). The sum of orders of the reactions is

A. 1, 0

B. O, 2

C. 0, 1

D. 1, 1

Answer: C

21. Chlorine reacts with hot and concentrated NaOH and produces compounds (P) and (Q). Compound (P) gives white precipitate with silver nitrate solution. The average bond order between Cl and O atoms in (Q) is Report your answer up to two decimal places.

22. In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from 0.75 g of sample neutralized 10 mL of 1 M H_2SO_4 . The percentage of nitrogen in the soil is

23. pH of saturated solution of $Ba(OH)_2$ is 12. The value

of solubility product $\left(K_{sp}
ight)$ of $Ba(OH)_2$ is

25. The percentage of p-character in the orbitals forming

p-p bonds in P_4 is

