© 'doubtnut

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 43

Chemistry

1. CsBr has bcc like structures with edge length $4.3 \AA$

. The shortest inter ionic distance in between $C s^{+}$
and Br^{-}is:
A. $4.3 \AA$

B. $7.44 \AA$

C. $1.86 \AA$
D. $3.72 \AA$

Answer: D

- Watch Video Solution

2. Predict the order of Δ 。 for the following compounds

I $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

II $\left[\mathrm{Mn}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
III $\left[\mathrm{Mn}(\mathrm{CN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$
A. $\Delta_{\circ}(I)<\Delta_{\circ}(I I)<\Delta_{\circ}(I I I)$
B. $\left.\Delta_{\circ}(I I)<\Delta_{\circ}(I)<\Delta_{\circ}\right)(I I I)$
C. $\Delta_{\circ}(I I I)<\Delta_{\circ}(I I)<\Delta_{\circ}(I)$
D. $\Delta_{\circ}(I)<\Delta_{\circ}(I I I)<\Delta_{\circ}(I I)$

Answer: A
3. The plots of the extent of adsroption (x / m) Vs pressure at different temperature are as follows,

The correct order of increasing temp for curves I, II, III, IV are ,
A. $T_{1}>T_{2}>T_{3}>T_{4}$
B. $T_{4}>T_{3}>T_{2}>T_{1}$
C. $T_{3}>T_{2}>T_{1}>T_{4}$
D. can't be predicted

Answer: B

- Watch Video Solution

4. Which of the following are not more basic than
$\mathrm{Al}(\mathrm{OH})_{3}$?
A. $\mathrm{Ca}\left(\mathrm{OH}_{2}, \mathrm{Ce}(\mathrm{OH})_{3}\right.$
B. $\mathrm{Yb}(\mathrm{OH})_{3}, \mathrm{Lu}(\mathrm{OH})_{3}$
C. $\mathrm{B}(\mathrm{OH})_{3}, \mathrm{Be}(\mathrm{OH})_{2}$
```
D. \(\mathrm{Ce}(\mathrm{OH}), \mathrm{Lu}(\mathrm{OH})_{3}\)
```


Answer: C

- Watch Video Solution

5. Ordinarily the barrier to rotation about a carbon carbon double bond is quite high but in compound P double bond between two rings was observed by NMR to have a rotational energy barrier of only about $20 \mathrm{cal} / \mathrm{mol}$., showing that it has lot of single bond character.

The reason for this is
A. Double bond having partial triple bond character because of resonance
B. Double bond undergoes flipping
C. Double bond having very high single bond
character because of aromaticity gained in both three and five membered rings.
D. $+I$ effect of $n C_{3} H_{7}$ groups makes double bond having partial single bond character.

Answer: C

- Watch Video Solution

6. In the
reaction,
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$, when
1 mole of ammonia and 1 mole of O_{2} are made to react to completion
A. 0.2 mol of $\mathrm{H}_{2} \mathrm{O}$ is produced
B. 0.1 mol of
C. all the oxygen will be consumed
D. all the ammonia will be consumed in order to

form 1 mole NO

Answer: C

- Watch Video Solution

7. The equilibrium $S O_{2} \mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$
is attained at $25^{\circ} C$ in a closed container and an inert gas, helium, is introduced. Which of the following statement is / are correct?
A. More chlorine is formed
B. Concentration of SO_{2} is reduced
C. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed
D. Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}, \mathrm{SO}_{2}$ and Cl_{2} do not change

Answer: D

D Watch Video Solution

8. Wooden artifact and freshly cut tree give 7.7 and $15.4 \mathrm{~min}^{-1} g^{-1}$ of carbon $\quad\left(t_{\frac{1}{2}}=5770\right.$ years $)$ respectively. The age of the artifact is
A. 5770 years
B. $5770 \times \frac{15.4}{7.7} \quad$ years
C. $5770 \times \frac{7.7}{15.4} \quad$ years
D. None of these

Answer: A

D Watch Video Solution

9. Which of the following is an example of heterogeneous catalysis?
A.

$$
\begin{aligned}
& \quad n\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right) \xrightarrow{R_{3} \mathrm{Al}+\mathrm{TiCl}_{4}}\left[-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right]_{4} \\
& \text { B. } 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{Pt}-\text { Asbestos }} 2 \mathrm{SO}_{3} \\
& \text { C. } R \mathrm{ROOR} \xrightarrow[\text { Catalyst }]{\mathrm{H}^{+}} \mathrm{RCOOH}+R O H \\
& \text { D. } 2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \xrightarrow{H g(l)} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10.

X gives white turbidity with Lucas reagent instantly.
X and Y both turn blue litmus solution red. Y can be:
A. p-Hydroxy benzoic acid
B. p - Hydroxy benzaldehyde
C. m-Hydroxy benzoic acid
D. p-Hydroxy benzyl alcohol

Answer: A
11.
A and B respectively are

Answer: C

12. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(\mathrm{A}) \xrightarrow[\mathrm{OH}-\mathrm{l}]{\mathrm{PhCHO}} B$

Gives positive
Tollen's test

Product B is :

A. $\mathrm{Ph}-\mathrm{CH}=\underset{\mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{CH}_{3}$
B.

C. $\mathrm{Ph}-\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}=\mathrm{CH}-\mathrm{Ph}$
D. $\mathrm{Ph}-\mathrm{CH}=\underset{\substack{\text { | } \\ \mathrm{C} \\ \mathrm{C}}}{\mathrm{CH}}-\mathrm{CHO}$

Answer: D

13. 1 - Methylcyclohexene on addition of HCl produces
A. 1 - chloro -1- methylcyclohexane
B. (\pm)-trans -2- chloro -1- methylcyclohexane
C. (\pm) cis -2- chloro -1- methylcyclohexane
D. 1-chloro-2-methylcyclohexane

Answer: A

Major product C is :

Answer: C

- Watch Video Solution

15. Which of the following orders is correct?
(1)
$\mathrm{SbH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}-\quad$ Boiling Point
(2)
$\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}-$ Thermal Stability
(3)
$\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}-$ Basic Character
(4) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{As} \mathrm{H}_{3}>\mathrm{SbH}_{3}-$ Bond Angle
A. (1), (2) and (3) only
B. (2), (3) and (4) only
C. (1), (3) and (4) only
D. (1), (2), (3) and (4).

Answer: C

- Watch Video Solution

16. Select the correct statement :

A. PH_{3} is reduces AgNO_{3} to metallic Ag.
B. Organic tissues turn AgNO_{3} black by reducing it to Ag .
C. $A g C N$ is soluble in KCN.
D. All are correct statements.

Answer: D

17. Which of the following statements is incorrect?
A. In Half - Heroult process, the electrolyte used
is a molten mixture of alumina, sodium hydroxide and cryolite.
B. Lead is extracted form its chief ore by both
carbon reduction and self reduction..
C. Tin is extracted from its chief ore by carbon
monoxide reduction.
D. Siderite and cassiterite are carbonate ores.

- Watch Video Solution

18. According to the molecular orbital theory which of the following statement is incorrect?
[LUMO = lowest unoccupied molecular orbital]
A. LUMO level for C_{2} molecule is $\sigma 2 p_{x}$ orbital.
B. In C_{2} molecules both the bonds π are bonds
C. $\operatorname{In} C_{2}^{2-}$ ion there is one σ and two π bonds
D. C_{2} is paramagnetic but C_{2}^{2-} is diamagnetic.

Answer: D

19. Gradual addition of KI solution of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ solution intially produces a dark brown precipitate which dissolves in excess of $K I$ to give a clear yellow solution. Write chemical eqautions for the above reactions.
A. I_{2}
B. $K I_{3}$
C. $\mathrm{Bi}(\mathrm{OH})_{2}$
D. $\mathrm{Bi}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)_{2}$

Answer: B
20. The characteristics X-rays wavelength is related
to atomic number by the relation $\sqrt{\nu}=a(Z-b)$
When Z is the atomic number, a and b are Mosley's constants. If $\lambda_{1}=2.886 \AA$ and $\lambda_{2}=2.365 \AA$ corresponding to $Z_{1}=55$ and $Z_{2}=60$
respectively, the value of Z corresponding to $\lambda=2.660 \AA$ is
A. 63
B. 67
C. 74
D. 507

Answer: D

D Watch Video Solution

21. How many of the following can show geometrical

 isomerism

v. $\mathrm{CHCl}=\mathrm{C}=\mathrm{CHCl}$
VII. $p H-N=N-P h$
VIII. $\mathrm{MeCH}=\mathrm{N}-\mathrm{NH}_{2}$

x. $\mathrm{CHCl}=\mathrm{C}=\mathrm{C}=\mathrm{CHCl}$

XII. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{Cl}$

- Watch Video Solution

22. For the strong electrolytes
$\mathrm{NaOH}, \mathrm{NaCl}$ and BaCl_{2} the molar ionic conductivities at infinite dilution are 250, 125 and $300 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductivity of $\mathrm{Ba}(\mathrm{OH})_{2}$ at infinite dilution $\left(\mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}\right)$ is .

D Watch Video Solution

23. Two moles of a gas at 8.21 bar and 300 K are expanded at constant temperature up to 2.73 bar against a constant pressure of 1 bar. How much
work (in Latm) is done by the gas?
(neglect the sign)

- Watch Video Solution

24. 30 ml of 0.2 M NaOH is added with 50 ml $0.2 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}_{3}$ solution. The extra volume of 0.2 M NaOH required to make the pH of the solution 5.00 is $\frac{10}{x}$. The value of x is. The ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}=2 \times 10^{-5}$.

- Watch Video Solution

25. The combustion of solidum is excess air yeilds a higher oxide. What is the oxidation state of the oxygen in the product? Neglect the negative sign.

- Watch Video Solution

