© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

MOTION IN A PLANE

Multiple Choice Questions
1.

The
angle
$A=\hat{i}+\hat{j}$ and $B=\hat{i}-\hat{j}$ is
A. 45°
B. 90°
C. -45°
D. 180°

Answer: B

(Watch Video Solution

2. Which one of the following statements is
true?
A. A scalar quantity is the one that is conserved in a process
B. A scalar quantity is the one that can
never take negative values
C. A scalar quantity is the one that does not
vary from one point to another in space

D. A scalar quantity has the same value for

observers with different orientation of
the axes

- Watch Video Solution

3. Figure shows the orientation of two vectors \vec{u} and \vec{v} in the (XY) plane.

If $\vec{u}=a \hat{i}+b \hat{j}$ and $\vec{v}=p \hat{i}+q \hat{j}$ which of the following is correct ?

Option 1 a and p are positive while b and q are negative

Option $2 a, p$ and b are positive while q is negative

Option $3 \mathrm{a}, \mathrm{q}$ and b are positive while p is negative

Option $4 \mathrm{a}, \mathrm{b}, \mathrm{p}$ and q are all positive
A. a and p are positive while b and q are
negative
B. a, p and b are positive while q is negative
C. a, q and b are positive while p is negative

D. a, b, p and q are all positive

Answer: B

- Watch Video Solution

4. The component of a vector r along X -axis will have maximum value if

Option 1 r is along positive Y -axis

Option $2 r$ is along positive X-axis

Option 3 r makes an angle of 450 with the X -
axis

Option $4 r$ is along negative Y-axis
A. r is along positive Y-axis
B. r is along positive X-axis
C. r makes an angle of 45° with the X-axis
D. r is along negative Y-axis

Answer: B

- Watch Video Solution

5. The range of a projectile fired at an angle of
15° is 50 m . If it is fired with the same speed at an angle of 45° its range will be
A. 60 m
B. 71 m
C. 100 m
D. 141 m

Answer: C
6. Consider the quantities, pressure, power, energy impulse, gravitational potential, electrical charge , temperature, area,Out of these, the only vector quantities are.
A. impulse, pressure and area
B. impulse and area
C. area and gravitational potential
D. impulse and pressure

Answer: B
7. In a two dimensional motion,instantaneous speed v_{0} is a positive constant.Then which of the following are necessarily true?

Option 1 The average velocity is not zero at any
time

Option 2 Average acceleration must always
vanish

Option 3 Displacements in equal time intervals
are equal

Option 4 Equal path lengths are traversed in
equal intervals
A. The average velocity is not zero at any time
B. Average acceleration must always vanish
C. Displacements in equal time intervals are
equal
D. Equal path lengths are traversed in equal intervals

Answer: D

- Watch Video Solution

8. In a two dimensional motion, instantaneous
speed v_{0} is a positive constant. Then which of the following are neccessarily true?
A. The acceleration of the particle is zero
B. The acceleration of the particle is
bounded
C. The acceleration of the particle is
necessarily in the plane of motion
D. The particle must be undergoing a

Answer: C

- Watch Video Solution

9. Three vectors \vec{A}, \vec{B} and \vec{C} add up to zero.Find which is false.
A. $(A \times B) \times C$ is not zero unless B, C are
parallel
B. $(A \times B)$. C is not zero unless B, C are
parallel
C. If A, B, C define a plane, $(A \times B) \times C$ is

in that plane

D.

$$
(A \times B) . C=|A||B \| C| \rightarrow C^{2}=A^{2}+B^{2}
$$

Answer: B::D

D Watch Video Solution

10. It is found that $|A+B|=|A|$,This necessarily implies.
A. $B=0$
B. A, B are antiparallel
C. A, B are perpendicular

$$
\text { D. } A . B \leq 0
$$

Answer: A::B

D Watch Video Solution

11. Two particles are projected in air with speed v_{0} at angles θ_{1} and θ_{2} (both acute) to the horizontal,respectively.If the height reached by
the first particle greater than that of the second,then thick the right choices
A. Angle of projection $q_{1}>q_{2}$
B. Time of flight $T_{1}>T_{2}$
C. Horizontal range $R_{1}>R_{2}$
D. Total energy $U_{1}>U_{2}$

Answer: A::B::C

- Watch Video Solution

12. A particle slides down a frictionless paraboli $\left(y=x^{2}\right)$ track $(A-B-C)$ starting from rest at point A.Point B is at the vertex of parabola and point C is at a height less than that of point A.After C, the particle moves freely in air as a projectile. If the particle reaches highest point at P,then

A. $K E$ at $P=K E$ at B

B. height at $\mathrm{P}=$ height at A

C. total energy at $P=$ total energy at A
D. time of travel from A to $B=$ time of travel

from B to P

Answer: C

- Watch Video Solution

13. Following are four different relations about displacement, velocity and acceleration for the
motion of a particle in general. Choose the incorrect one (s)

$$
\begin{aligned}
& \text { A. } v_{\mathrm{av}}=\frac{1}{2}\left[v\left(t_{1}\right)+v\left(t_{2}\right)\right] \\
& \text { B. } v_{\mathrm{av}}=\frac{r\left(t_{2}\right)-r\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \text { C. } r=\frac{1}{2}\left(v\left(t_{2}\right)-v\left(t_{1}\right)\right)\left(t_{2}-t_{1}\right) \\
& \text { D. } a_{\mathrm{av}}=\frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

Answer: A::C

D Watch Video Solution

14. For a particle performing uniform circular motion, choose the correct statement (s) from the following.
A. Magnitude of particle velocity (speed)
remains constant
B. Particle velocity remains directed
perpendicular to radius vector
C. Direction of acceleration keeps changing as particle moves

D. Angular momentum is constant in

magnitude but direction keeps changing

Answer: A::B::C

- Watch Video Solution

15. For two vectors \vec{A} and \vec{B}
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ is always true when.
A. $|A|=|B| \neq 0$
B. $A \perp B$
C. $|A|=|B| \neq 0$ and A and B are parallel or anti-parallel

D. when either $|A|$ or $|B|$ is zero

Answer: B::D

- Watch Video Solution

16. A cyclist starts form centre O of a circular park of radius 1 km and moves along the path
$O P R Q O$ as shown in the figure. If he maintains constant speed of $10 \mathrm{~ms}^{-1}$, what is
his acceleration at point (R) in magnitude and direction?

D Watch Video Solution
17. A particle is projected in air at some angle to the horizontal, moves along parabola as shown in figure where x and y indicate horizontal and vertical directions, respectively . Shown in the diagram, direction of velocity and acceleration at points A, B and C .

18. A ball is thrown from a roof top at angle of
40° above the horizontal. It hits the ground a
few seconds later. At what point during its motion. Does the ball have
(a) greatest speed (b) smallest speed (c) greatest acceleration ? Explain.

D Watch Video Solution

19. A football is kicked into the air vertically upwards. What is its (a) acceleration, and (b) velocity at the highest point ?

- Watch Video Solution

20. \vec{A}, \vec{B} and \vec{C} are three non-collinear, non co-planar vectors. What can you say about direction of $\vec{A} \times B \times \vec{C})$?

D Watch Video Solution

21. A boy travelling in an open car moving on a levelled road with constant speed tosses a ball vetically up in the air and catches it back. Shetch the motion of the ball as observed by a boy stanceing on the footpath. Give explanation to support your diagram.

D Watch Video Solution

22. A boy throws a ball in air at 60° to the horizontal along a road with a speed of $10 \mathrm{~m} / \mathrm{s}$
. Another boy sitting in a car passing by
observes the ball. Sketch the motion of the ball
as observed by the boy in the car, If car has a speed of $(18 k m / h)$. Give explanation to support your diagram.

D Watch Video Solution

23. In dealing with motion of projectile in air,
we ignore effect of air resistance on motion.

This gives trajectory as a parabola as you have studied. What would the trajectory look like it air resistance is included . Sketch such a
trajectory and explain why you have drawn it that way.

- Watch Video Solution

24. A fighter plane is flying horizontally at an altitude of 1.5 km with speed $720 \mathrm{kmh}^{-1}$. At what angle of sight (w.r.t horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target?
$\left(\right.$ Takeg $\left.=10 m s^{-2}\right)$
25. (a) Earth can be thought of as a sphere of radius 6400 km . Any object (or a person) is performing circular motion around the axis on earth due to earth's rotation (period 1 day).

What is acceleration of object on the surface of
the earth (at equator) towards its centre ?

What is its latitude θ ? How does these accelerations compare with $g=9.8 m / s^{2}$?
(b) Earth also moves in circular orbit around sun every year with an orbital radius of
$1.5 \times 10^{11} \mathrm{~m}$. What is the acceleration of earth
(or any object on the surface of the earth) towards the centre of the sun ? How does this acceleration compare with $g=9.8 m s^{2}$?

D Watch Video Solution

26. Given below in Column I are the relations between vectors a,b and cand in Column II are the orientations of a, b and c in the $X Y$ - plane.

Match the relation in Column I to correct
orientations in Column II.

Column 1	Column II
(a) $\mathbf{a}+\mathbf{b}=\mathbf{c}$	(i)
(b) $\mathbf{a}-\mathbf{c}=\mathbf{b}$	(ii)
(c) $\mathbf{b}-\mathbf{a}=\mathbf{c}$	(iii)
(d) $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$	(iv)

Watch Video Solution

27. If $|A|=2$ and $|B|=4$, then match the relation
in Column I with the angle θ between A and B in Column II.

	Column I		Column II
(a)	$\mathrm{A} \cdot \mathrm{B}=0$	(i)	$\theta=0$
(b)	$A \cdot B=+8$	(ii)	$\theta=90^{\circ}$
(c)	$\mathrm{A} \cdot \boldsymbol{B}=4$	(iii)	$\theta=180^{\circ}$
(d)	$A \cdot B=-8$	(iv)	$\theta=60^{\circ}$

D Watch Video Solution

28. If $|\vec{A}|=2$ and $|\vec{B}|=4$, then match the relations in column I with the angle θ between
\vec{A} and \vec{B} in column II.
Column I, Column II
(a) $|\vec{A} \times \vec{B}|=0$, (i) $\theta=30^{\circ}$
(b) $|\vec{A} \times \vec{B}|=0$, (ii) $\theta=45^{\circ}$
(c) $\vec{A} \times \vec{B} \mid=4$, (iii) $\theta=90^{\circ}$
(d) $|\vec{A} \times x \vec{B}|=4 \sqrt{2}$, (iv) $\theta=0^{\circ}$.

D Watch Video Solution

29. A hill is 500 m high. Supplies are to be across the hill using a canon that can hurl packets at a speed of $125 \mathrm{~m} / \mathrm{s}$ over the hill.

The canon is located at a distance of 800 m
from the foot to hill and can be veoved on the ground at a speed of $2 \mathrm{~m} / / \mathrm{s}$, so that its distance from the hill can be adjusted. What is the shortest time inwhich a pachet can reach on the ground across the hill ? Taje $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

- Watch Video Solution

30. A gun can fire shells with maximum speed v_{0} and the maximum horizontal range that can
be achieved is $R=\frac{v_{0}^{2}}{g}$. If a target farther away by distance Δx (beyond R) has to be hit with the same gun, show that it could that it could be achieved by raising the gun to a height at least $h=\Delta x\left[1+\frac{\Delta x}{R}\right]$

- Watch Video Solution

31. A particle is projected in air at an angle β to
a surface which itself is inclined at an angle α to the horizontal (Fig. 2 (EP). 26)
(a) Find an expression for range on the plane
surface (distance on the plane from the point of projection at which particle will hit the surface). (b) Time of flight. 9c) β at which
range will be maximum.

D Watch Video Solution

32. A particle falling vertically from a height hits a plane surface inclined to horizontal at an ange θ with speed v_{0} and rebounds elastically
(Fig. 2 (RP). 28). Find the distance aling the plane where it will hit second time.

- Watch Video Solution

33. A girl riding a bicycle with a speed of $5 \mathrm{~m} / \mathrm{s}$ to wards North direction, observes rain falling vertically down. If she increases her speed to
$10 \mathrm{~m} / \mathrm{s}$, rain appeared to meet her at 45° to the vertical. What is the speed of the rain?

- Watch Video Solution

34. A river is flowing due east with a speed $3 m / s$ (Fig. 2 (EP) . 31).

(a) If
swimmer starts swimming due north, what will
be his resultant velocity (magnitude and direction) ? (b) If he wants to start from point
(A) on South bank and reach opposite point (B)
on North bank,
(i) Which direction should he swim? (ii) What will be his resultant speed ? (c) From two differenrent casses as mentioned in (a) and 9b) above, in which casse will he reach opposite bank in shorter time?

D Watch Video Solution

35. A cricket fielder can throw the cricket ball
with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball
will land?
(d) find θ at which he should throw the ball that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if $u>v_{0}, u=v_{0}, \underline{t} v_{0} ?$
(f) how does θ in (e) compare with that for $\mathrm{u}=0$ (i.e., 45^{\wedge} @) ?

D View Text Solution

36. Motion in two dimensions, in a plane can be
studied by expressing position, velocity and acceleration as vectors in cartesian
coordinates $A=A_{x} \hat{i}+A_{y} \hat{j}$, where \hat{i} and \hat{j} are unit vector along x and y-directions, respectively and A_{x} and A_{y} are corresponding components of A. Motion can also be studied
by expressing vectors in circular polar coordinates as $A=A_{r} \hat{r}+A_{\theta} \hat{\theta}$, where
$\hat{r}=\frac{r}{r}=\cos \theta \hat{i}+\sin \theta \hat{j}$
$\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ are unit vectors along
direction in which r and θ are increasing.
(a) Express \hat{i} and \hat{j} in terms of \hat{r} and $\hat{\theta}$.
(b) Show that both \hat{r} and $\hat{\theta}$ are unit vectors and are perpendicular to each other.
(c) Show that $\frac{d}{d t}(\hat{r})=\omega \hat{\theta}$, where $\omega=\frac{d \theta}{d t}$ and $\frac{d}{d t}(\hat{\theta})=-\theta \hat{r}$.
(d) For a particle moving along a spiral given by $r=a \theta \hat{r}$, where $\mathrm{a}=1$ (unit), find dimensions of a.
(e) Find velocity and acceleration in polar vector representation for particle moving along spiral described in (d) above.

D View Text Solution

37. A man wants to reach from A to the opposite corner of the square C. The sides of
the square are 100 m . A central square of $50 m \times 50 m$ is filled with sand. Outside this square, he can walk at a speed $1 \mathrm{~m} / \mathrm{s}$. In the central square, he can walk only at a speed of v $\mathrm{m} / \mathrm{s}(v<1)$. What is smallest value of v for which he can reach faster via a straight path
through the sand than any path in the square

outside the sand ?

