©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 90

Chemistry

1. Which of the following complex ions is expected to absorb visible light?
A. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
B. $\left[V\left(N H_{3}\right)_{6}\right]^{3+}$
C. $\left[T i\left(N H_{3}\right)_{6}\right]^{4+}$
D. $\left.\left[Z n\left(N H_{3}\right)\right)_{6}\right]^{2+}$

Answer: B

(D) Watch Video Solution

2. Predict the percentage of isomers formed during monobromination of 2,3-dimethyl butane at room temperature. Relative reactivity of $1^{\circ}, 2^{\circ}, 3^{\circ} \mathrm{H}$ atoms to chlorination is $(1.0: 3.8: 5.0)$.
A. $15 \%, 45 \%, 20 \%, 25 \%$
B. $14 \%, 35 \%, 23 \%, 28 \%$
C. $12 \%, 30 \%, 22 \%, 29 \%$
D. $17 \%, 36 \%, 20 \%, 23 \%$

Answer: B

(Watch Video Solution

3. The IUPAC name of the given structure

A. 4 - keto -3- bromo -2-iodopentanoic acid
B. 2 - iodo -3- bromo -4- keto - pentanoic acid
C. 3 - bromo -2- iodo -4- ketopentanoic acid
D. 4-carboxy-3-bromo-4-iodopentanoic acid

Answer: C

4. Which of the following statements is (are) incorrect?
(i) Percentage ionic character in CsCl bond is $\sim 55 \%$.
(Electronegativity values of Cs and Cl are 0.7 and 3.0
respectively)
(ii) From $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{3} \mathrm{O}^{+}$, the geometry around O atom changes drastically.
(iii) The most stable oxidation state for element with atomic number 113 is expected to be +2 .
(iv) The $2^{\text {nd }}$ ionization energy of Ca is greater than $1^{\text {st }}$ ionization energy of it but lower then $2^{\text {nd }}$ ionization energyof K.
A. Only i
B. i,ii, iii
C. ii, iii
D. iii, iv

Answer: C

(Watch Video Solution

5. Out of the following ions
$\mathrm{Ti}^{3+}, \mathrm{V}^{3+}, \mathrm{Cu}^{+}, \mathrm{Sc}^{3+}, \mathrm{Mn}^{3+}$ and Co^{2+} the colourless ions will be
A. $C u^{+}, S c^{3+}$
B. $T i^{3+}, V^{3+}$
C. $C u^{+}, C o^{2+}$
D. $S c^{3+}, F e^{3+}$

Answer: A

- Watch Video Solution

6. The product (A) of the following reaction

$\mathrm{CH}_{3} \mathrm{OH}$?

$$
\mathrm{CH}_{2}-\mathrm{CH}_{2}
$$

A.

$$
\begin{array}{cc}
\mid & \mid \\
\mathrm{CH}_{3} \mathrm{O} & \mathrm{COOH} \\
\mathrm{CH}_{2}-\mathrm{CH}_{2}
\end{array}
$$

B.

$\mathrm{HO} \quad \mathrm{COOCH}_{3}$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$
C.

$\mathrm{CH}_{3} \mathrm{O} \quad \mathrm{COOCH}_{3}$

$\mathrm{CH}_{2}-\mathrm{CH}_{2}$

D.

Answer: B

- Watch Video Solution

7. Consider the following carbanions :
(I) $\mathrm{H}_{3} \mathrm{CO}$

(II) $\mathrm{O}_{2} \mathrm{~N}$

(III)

(IV)

Correct decreasing order of stability is -
A. $I I>I I I>I V>I$
B. $I I I>I V>I>I I$
C. $I V>I>I I>I I I$
D. $I>I I>I I I>I V$

Answer: A

- Watch Video Solution

8. $A g_{2} S+N a C N \rightarrow(a)$
(a) $+Z n \rightarrow(d)$
(b) is a metal. Hence (a) and (b) are
A. $N a_{2}\left[Z n(C N)_{4}\right], Z n$
B. $N a_{2}\left[A g(C N)_{2}\right], A g$
C. $N a_{2}\left[\operatorname{Ag}(C N)_{4}\right], A g$
D. $N a_{3}\left[\operatorname{Ag}(C N)_{4}\right], A g$

Answer: B

(Watch Video Solution

9. Which of the following option is correct for given curve?

A. $\frac{x}{m} \propto(P)$
B. $\frac{x}{m} \propto(P)^{2}$
C. $\frac{x}{m} \propto(P)^{1 / 2}$
D. $\frac{x}{m} \propto(P)^{0}$

Answer: C

- Watch Video Solution

10. Acetone on addition to methyl magnesium bromide forms a complex, which on decomposition with acid gives X and $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$. Which one of the following is X ?
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

- Watch Video Solution

11. $\mathrm{A}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}+\mathrm{HCl}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}+\mathrm{HCl}$
Compound (A), (B) and (C) will be respectively:
A. $\mathrm{PCl}_{5}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}$
B. $\mathrm{PCl}_{5}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{SOCl}_{2}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}$
D. $\mathrm{PCl}_{3}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: B

- Watch Video Solution

12. Which of two water sample A \& B with BOD of $10 p p m$ and 20 ppm respectively, then mark correct option
A. A is more polluted
$B . B$ is more polluted
C. A and B both are equally polluted
D. A and B both are equally suitable for drinking.

Answer: B

(Watch Video Solution

13. A compound A dissociate by two parallel first order paths
at certain temperature
$A(g)^{k_{1}\left(\min ^{-1}\right)} \rightarrow 2 B(g) k_{1}=6.93 \times 10^{-3} \min ^{-1}$
$A(g)^{k_{2}\left(\min ^{-1}\right)} \rightarrow C(g) k_{2}=6.93 \times 10^{-3} \min ^{-1}$
If reaction started with pure ' A ' with 1 mole of A in 1 litre closed container with initial pressure (in atm) developed in container after 50 minutes from start of experiment?
A. 1.25
B. 0.75
C. 1.50
D. 2.50

Answer: D

- Watch Video Solution

14. On subjecting 10 ml mixture of N_{2} and CO to repeated electric spark to form CO_{2} and $\mathrm{NO}, 7 \mathrm{ml}$ of O_{2} was required
for combustion. What was the mole precent of CO in the mixture ? (All volumes were measured under identical conditions)
A. 4
B. 6
C. 40
D. 60

Answer: D

- Watch Video Solution

15. The increasing order of Ag^{+}ion concentration in
I. Saturated solution of AgCl
II. Saturated solution of Agl
III. $1 \mathrm{MAg}\left(\mathrm{NH}_{3}\right)_{2}^{+}$in $0.1 M N H_{3}$
IV. $1 M A g(C N)_{2}^{-} \quad$ in $0.1 M K C N$

Given :
$K_{s p}$ of $\mathrm{AgCl}=1.0 \times 10^{-10}$
$K_{s p}$ of $A g l=1.0 \times 10^{-16}$
K_{d} of $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}=1.0 \times 10^{-8}$
K_{d} of $\mathrm{Ag}(C N)_{2}^{-}=1.0 \times 10^{-21}$
A. $I<I I<I I I<I V$
B. $I V<I I I<I I<I$
C. $I V<I I<I I I<I$
D. $I V<I I<I<I I I$

Answer: C
16. A 100 ml solution of 0.1 NHCl was titrated with 0.2 ?

NNaOH solution. The titration. The remaining titration war completed by adding 0.25 NKOH solution. The volume of

KOH required for completing the titration is
A. 16 ml
B. 32 ml
C. 35 ml
D. 70 ml

Answer: A

- Watch Video Solution

17. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms (A) is
A. $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
C. $C H \equiv C H$
D. CH_{4}

Answer: D

- Watch Video Solution

18. Mole fraction of the toluene in the vapour phase which is in equilibrium with a solution of benzene ($p^{\circ}=120$ torr) and toluene ($p^{\circ}=80$ torr) having 2.0 mol of each is :
A. 0.50
B. 0.25
C. 0.60
D. 0.40

Answer: D

(Watch Video Solution

19. When two compounds $A c l_{3}$ and $D C l_{3}$ of two elements

A and D are mixed together a compound $A D C l_{6}$ is formed.

Structural analysis showed that $A d C l_{6}$ is an ionic compound. Given that $D C l_{3}$ is trigonal planar and Acl_{3} is trigonal pyramidal, predict the shape of the anion DCl_{4}^{-}.
A. See - saw
B. Perfect tetrahedral
C. Square planar
D. None of these

Answer: B

- Watch Video Solution

20. Pegarding the structure of SO_{2} and SeO_{2} which of the following is true-
A. The gaseous SO_{2} and SeO_{2} have same V - shaped molecule both in solid and gas phase
B. At room temperature both SO_{2} and SeO_{2} are solids.
C. In the solid phase the structure of SO_{2} is V - shaped discrete molecule but SeO_{2} is cyclic trimeric
D. In solid phase the sturcture of SO_{2} is V - shaped discrete molecule but SeO_{2} has linear polymeric chain

Answer: D

- Watch Video Solution

21. Calculate the equilibrium constant for the reaction :

$$
F e^{2+}+C e^{4+} \Leftrightarrow F e^{3+}+C e^{3+}
$$

$$
E_{\mathrm{Ca}^{4+} / \mathrm{Ce}^{3+}}^{\circ}=1.44 \mathrm{~V} \text { and } E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=0.68 \mathrm{~V}
$$

- Watch Video Solution

22. Consider the following conversion :

Amongst the following, how many methods can be used in any one of steps involved in the mentioned conversion?
i. Hoffmann bromamide degradation
ii. Gabriel phthalimide synthesis
iii. Sandmeyer reaction
iv. Clemmensen reduction
v. Mendius reduction
23. The surface of copper gets tarnished by the formation of copper oxide. N_{2} gas was passed to prevent the oxide formation during heating of copper at 1250 K . However, the N_{2} gas contains 1 mole \% of water vapour as impurity. The water vapour oxidises copper as per the reaction given below: $2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$ is the minimum partial pressure of H 2 (in bar) needed to prevent the oxidation at 1250 K . The value of In is \qquad . (Given: total pressure $=1$ bar, R (universal gas constant) $=$ $8 J K-1 \mathrm{~mol}^{-1}, \ln (10)=2.3 . \mathrm{Cu}(\mathrm{s})$ and $\mathrm{Cu}_{2} \mathrm{O}(s) \quad$ are mutually immiscible. At 1250
$\mathrm{K}: 2 \mathrm{Cu}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$
$\triangle H^{\theta}=-78,000 \mathrm{Jmol}^{-1}$

$$
H_{2}(g)+1 / 2 O_{2}(g) \rightarrow H_{2} O(g), \triangle G^{\theta}=-1,78,000 \mathrm{Jmol}^{-1}
$$

, G is the Gibbs energy

- Watch Video Solution

24. 3 - Methylbutane $-2-o l+H l \xrightarrow{\Delta} X$ Idenfity the position of carbon in the main chain to which nucleophile is added in the product ' X '?

- Watch Video Solution

25. Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at $37^{\circ} \mathrm{C}$.

