©゙ doubtnut

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 92

Chemistry

1. If $\lambda=c_{2}\left[\frac{n^{2}}{n^{2}-2^{2}}\right]$ for Balmer series, what is the value of c_{2} ?
A. $\frac{4}{R_{H}}$
B. $\frac{2}{R_{H}}$
C. $2 R_{H}$
D. $4 R_{H}$

D Watch Video Solution

2. Which formula does not correctly represent the bonding capacity of the central atom involved?
A. $\left.\left[\begin{array}{c}H \\ H-\stackrel{\mid}{P} \\ \\ H\end{array}\right] H\right]^{+}$

B.
C.

D.

Answer: D
3. Each of the compounmds
$\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}, \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$ and $\mathrm{K}_{2} \mathrm{PtCl}_{6} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3} \quad$ were dissolved in water to make its 0.01 M solution. The correct order of their increasing conductivity in solution is
A.

$$
K_{2}\left\{T C l_{6}<\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \cdot l_{3}<\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}<\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}\right.
$$

B.

$$
\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Clk}_{3}<\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} . \mathrm{Cl}_{3}<\mathrm{K}_{2} \mathrm{PtCl}_{6}<\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}
$$

C.

$$
\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} . \mathrm{Cl}_{3}<\mathrm{K}_{2} \mathrm{PtCl}_{6}<\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}<\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}
$$

D.

$$
\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}<\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} . \mathrm{Cl}_{3}<\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}<\mathrm{K}_{2} \mathrm{PtCl}_{6}
$$

D Watch Video Solution

4. Which graph correctly correlates $E_{\text {cell }}$ as a function of concentration for the cell (for different values of M nad M^{\prime}
$Z n(s)+C u^{2+}(M) \rightarrow Z n^{2+}\left(M^{\prime}\right)+C u(s), E_{\text {cell }}^{\circ}=1.10 \mathrm{~V}$
X - axis : $\log _{10} \cdot \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}, \mathrm{Y}$ - axis : $E_{\text {cell }}$
A.

B.

Answer: B

Watch Video Solution

5. Arrange the following compounds in order of their reactivity towards LiAlH_{4}

(i)

(ii)

(iii)
A. $I<I I<I I I$
B. $I<I I I<I I$
C. $I I<I<I I I$
D. $I I<I I I<I$

Answer: D

D Watch Video Solution

6.

Compound (C) is

A.
B.

C.

D.

Answer: C
(D) Watch Video Solution
7. The elevation in boiling point of a solution $d T_{b}$ is related with molality of solution (m) by the reaction:
$d T_{b}=\left[\frac{R T_{b}^{2}}{\Delta H_{\text {vap }}}\right]\left[\frac{M_{1}}{1+m M_{1}}\right]$, where M_{1} is moalr mass of solvent and $\Delta H_{v a p}$ is heat of vaporisation of solvent. For a dilute solution, the relation $\left(\frac{\partial T_{b}}{\partial T_{n}}\right)_{m \rightarrow 0}$ gives:
A. Molal ebullioscopic constant
B. Elevation in boiling point
C. Boiling point of solvent
D. Elevation in boiling point $\left(\Delta T_{b}\right)$ becomes more predominant

Answer: A

D Watch Video Solution

8. Given the decreasing order of reactivity of the following compounds with HBr .
(I)

(II) $\mathrm{H}_{3} \mathrm{C}$

(III) MeO

(IV)

A. $I I I>I V>I I>I$
B. $I I I>I I>I V>I$
C. $I I I>I I>I>I V$
D. $I I>I I I>I V>I$

Answer: C

D Watch Video Solution

9. Consider the following reaction and Identify (B)

B.

C.

D.

Answer: C

D Watch Video Solution

10. What is the equation form of Langmuir adsorption isotherm undre high pressure?
A. It is valid for chemisorption
B. \ln. $\frac{X}{m}=-\frac{\Delta H^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R} \backslash$
C. $\frac{X}{m}=\frac{a}{b}$
D. At very high pressure rate of adsorption $>$ rate of desorption

Answer: D

- Watch Video Solution

11. Which is the correct order of decreasing boiling point of azeotropic mixtures $\mathrm{X}-\mathrm{H}_{2} \mathrm{O}$?
A. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HF}>\mathrm{HCl}$
B. $\mathrm{HI}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HF}$
C. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
D. $\mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HI}$
12. In the following reaction, the final product can be prepared by two paths (I) and (II). Which of the following statements is correct?

Path (II) $\downarrow \mathrm{NaCN}$

A. Path (I) is feasible
B. Path (II) is feasible
C. Both paths are feasible
D. Neither of the two paths is feasible

Answer: A

13. Point out the incorrect statement among the following?
A. The oxidation state of oxygen is +2 in $O F_{2}$.
B. Acidic character follows the order
$\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$.
C. The tendency to form multiple bonds increases in moving down the group from sulphur to tellurium (towards C and N)
D. Sulphur has a strong tendency to catenate while oxygen shows this tendency to a limited extent.

Answer: C

14. What will be the order of reaction and rate constant for a chemical change having $\log t_{50 \%}$ vs log concentration of (a) curves
as:

A. 0,1
B. 1,1
C. 2, 2
D. 1, 0

Answer: A
15. In the Hoope's process for refining of aluminium, the fused materials form three different layers and they remain separated during electrolysis also. This is because -
A. There is special arrangement in the cell to keep the layers separate
B. The three layers have different dinsities
C. The three layers are maintained at different temperatures.
D. The upper layer is kept attracted by the cathode and the lower layer is kept attracted by the anode.

Answer: B

- Watch Video Solution

16. The oxidation number is changed in which of the following case?
A. SO_{2} gas is passed into $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}$
B. Aqueous solution of CrO_{4}^{2-} is acidified
C. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ is dissolved in NaOH
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ solution is made alkaline.

Answer: A

D Watch Video Solution

17. The temperature coefficient of e.m.f of a cell can be given by :

- Watch Video Solution

18. Given the major product of the following reaction.

A.

B.

C.

Answer: B

D Watch Video Solution

19. How many unit cell are present in a cubic-shaped ideal crystal of NaCl of mass $1.0 g$?
A. 2.57×10^{21}
B. 5.14×10^{21}
C. 1.28×10^{21}
D. 1.71×10^{21}
20. Which of the following pairs of compounds are more stable?
A. $K_{2}\left[N i C l_{6}\right],\left[P t(C N)_{4}\right]^{2-}$
B. $\mathrm{NiCl}_{4}, \mathrm{PtCl}_{4}$
C. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, K_{2}\left[\mathrm{PtCl}_{6}\right]$
D. $\mathrm{PtCl}_{2}, \mathrm{NiCl}_{2}$

Answer: C

- Watch Video Solution

21. A spherical ballon of 21 cm diameter is to be filled with H_{2} at NTP from a cylinder containing the gas at 20 atm at $27^{\circ} C$.If the cylinder can hold 2.80 L of water, calculate the number of ballons that can be filled up .

- Watch Video Solution

22. How many moles of Grignard reagent will consume when it reacts with following compounds?

- Watch Video Solution

23. 0.56 g of lime stone was treated with oxalic acid to give $\mathrm{CaC}_{2} \mathrm{O}_{4}$.

The precipitate decolorized 45 ml of $0.2 \mathrm{NKMnO}_{4}$ in acid medium.
Calculate $\%$ of CaO in lime stone.

How many geometrical isomer of (A) is possible?

D Watch Video Solution
25. How many of these elements have more first ionization energy then boron $L i, B e, C, N, O, F, N e$

