©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 93

Chemistry

1. Find the maximum value $(n+l+m)$ for unpaired electrons in second excited state of chlorine ${ }^{17} \mathrm{Cl}$.
A. 4
B. 20
C. 28
D. 27

- Watch Video Solution

2. $S b F_{5}$ reacts with $X e F_{4}$ to form an adduct. The shapes of cation and anion in the adduct are respectively :
A. square planar, trigonal bipyramidal
B. T-shaped, octahedral
C. Square pyramidal, octahedral
D. Square planar, octahedral

Answer: B

- Watch Video Solution

3. Which of the following graphs correctly represents the variation of $\beta=-\frac{d V / d P}{V}$
with P for an ideal gas at constant temperature?

Answer: A
4. Which one of the following statements regarding the population of different conformers butane - 2,3 - diol is true?
A. The most populated conformer with have the hydroxyl groups of the gauche position.
B. The most populated conformer will have the hydroxyl groups at the anti position.
C. All staggered conformations will be equally populated.
D. Relative populations of different conformers is not predictable

Answer: A

- Watch Video Solution

5. Band theory predicts that magnesiums is an insulator. However, in practice it acts as a conductor due to
A. presence of filled 3 s - orbital
B. overlap of filled $2 p$ and filled $3 s$ - orbital
C. overlap of filled 3s and empty $3 p$ - orbital
D. presence of unfilled 3p-orbital

Answer: C

- Watch Video Solution

6. Consider the given compounds :
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ (b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{NH}$
(c) $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{N}$ (d) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}-\mathrm{C}_{2} \mathrm{H}_{5}$

Arrange basicity of these compounds in decreasing order :
A. $4>1>2>3$
B. $1>2>3>4$
C. $1>4>2>3$
D. $4>1>3>2$

- Watch Video Solution

7. Which of the following ionic/molecular species does not disproportionate in water at room temperature?
A. NO_{2}
B. $C u^{+}$
C. MnO_{4}^{2-}
D. $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$

Answer: D

Watch Video Solution

8. In correct statement regarding following reaction is

$$
\mathrm{XeF}_{6} \xrightarrow[+2 \mathrm{H}_{2} \mathrm{O}]{+ \text { Excess } \mathrm{H}_{2} \mathrm{O}}{ }^{+} \mathrm{Y}^{\prime}+\mathrm{HF}
$$

- Watch Video Solution

9. In the given reaction
[X] will be

A.

B.

C.
D.

Answer: A

- Watch Video Solution

10. An ideal gas is taken around the cycle ABCA as

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $3 P_{1} V_{1}$
D. $P_{1} V_{1}$

Answer: C

- Watch Video Solution

11. $\mathrm{CuSO}_{4}(a q) \xrightarrow{\mathrm{H}_{2} S \uparrow} M \downarrow \xrightarrow{\text { Excess of } \mathrm{KCN}} N+O$

Then final product N and O are respectively.
A. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-},(\mathrm{CN})_{2}$
B. $\mathrm{CuCN},(C N)_{2}$
C. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-},(\mathrm{CN})_{2}$
D. $\mathrm{Cu}(\mathrm{CN})_{2}, \mathrm{~K}_{2} S$

Answer: A

12. In the reaction sequence

will be
A.

B.

C.

D.

- Watch Video Solution

13. Equilibrium constant K_{C} for the following reaction at 800 K is, 4
$\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$.
The value of K_{p} for the following reaction will be
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
A. $\left(\frac{800 R}{4}\right)^{2-}$
B. $16 \times(800 R)^{2}$
C. $\left[\frac{1}{4 \times 800 R}\right]^{2}$
D. $(800 R)^{1 / 2} 4$

Answer: C

14. Arrange the following cyano complexes in decreasing order of their magnetic moment.
A.

$$
\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

B.

$$
\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

C.

$$
\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

D.

$$
\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Mn}(\mathrm{CN})_{6}^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}\right.
$$

Answer: A

- Watch Video Solution

15. A reactant (A) forms two products
$A \xrightarrow{k_{1}} B$, Activation energy $E_{a 1}$
$A \xrightarrow{k_{2}} C$, Activation energy $E_{a 2}$
If $E_{a_{2}}=2 E_{a_{1}}$ then k_{1} and k_{2} are related as
A. $k_{2}=k_{1} e^{\frac{-E a_{1}}{R T}}$
B. $k_{2}=k_{1} e^{\frac{E a_{2}}{R T}}$
C. $k_{1}=A k_{2} e^{\frac{E_{a_{2}}}{R T}}$
D. $k_{1}=2 k_{2} e^{\frac{E a_{2}}{R T}}$

Answer: A

- Watch Video Solution

16. Pyroxenes are class of silicate minerals, which exhibit a polymeric chain structure, as shown below

Its simplest repeating unit is
A. $\left[\mathrm{SiO}_{4}\right]^{4-}$
B. $\left[\mathrm{SiO}_{3}\right]^{2-}$
C. $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$
D. $\left[S i_{4} O_{11}\right]^{6-}$

Answer: B

17. In the given reaction

[X] will be

A.

B.

C.

D.

Answer: A
18. $M g(s)\left|M g^{2+}(a q)\right|\left|Z n^{2+}(a q)\right| Z n(s), E^{\circ}=+3.13 V$

The correct plot of $E_{\text {cell }}$ versus log. $\frac{\left[M g^{2+}\right]}{\left[Z n^{2+}\right]}$ will be represented as

A.

C.

- Watch Video Solution

19. In the reaction sequence
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow[\Delta]{\mathrm{NH}_{2} \mathrm{OH} / \mathrm{H}^{\oplus}}(X) \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5} / \Delta}(Y) \xrightarrow{\mathrm{H}_{2} \frac{\emptyset}{\mathrm{H}^{\oplus}}}(Z)$
$(X),(Y)$ and (Z) respectively be
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{N}-\mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
C. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{NOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{NOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$

Answer: A

- Watch Video Solution

20. Choose the correct sequence for the geometry of the given molecules

Borazon, Borazole, $B_{3} O_{6}^{3-}$, trimer of FCN.
['P' stands for planer and 'NP' standes for non-planer]
A. NP, NP, NP, P, P
B. P, P, NP, NP, P
C. NP, NP, NP, P, NP
D. NP, P, P, NP, P

Answer: D

- Watch Video Solution

21. Graph between $\log \left(\frac{x}{m}\right)$ and $\log P$ is straight line at angle of 45° with the intercept of 0.6020 .

The extent of adsorption $\left(\frac{x}{m}\right)$ at a pressure of 1 atm is

- Watch Video Solution

22.

$$
\mathrm{Na}_{2} \mathrm{O}_{2} \xrightarrow[\substack{0^{\circ} \mathrm{C} \\ \text { Water }}]{\text { Water }} \mathrm{P}+\mathrm{Q}
$$

Find the sum of bond order between same bonded atoms in Q and R compounds.
23. How many mL of 22.4 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ is required to oxidise 0.1 mol of

$\mathrm{H}_{2} \mathrm{~S}$ gas to S ?

- Watch Video Solution

24. K_{a} for $H C N$ is 5×10^{-10} at $25^{\circ} C$. For maintaining a constant pH of 9, the volume in ml of 5 M KCN solution required to be added to 10 ml of 2 M HCN solution is

Watch Video Solution

25. How many -OH groups are present in one molecules of sucrose?

- Watch Video Solution

