びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 10

Math

1. The solution of $\mathrm{dy}=\cos \mathrm{x}(2-y \operatorname{cosec} x) d x$, where $y=\sqrt{2}, \quad$ when $x=\pi / 4$ is
A. $y=\sin x+\frac{1}{2} \cos e c x$
B. $y=\tan (x / 2)+\cot (x / 2)$
C. $y=(1 / \sqrt{2}) \sec (x / 2)+\sqrt{2} \cos (x / 2)$
D. None of the above

D Watch Video Solution

2. Find the domain of the function f given by
$f(x)=\frac{1}{\sqrt{[x]^{2}-[x]-6}}$
A. $(-\infty,-2)$
B. $(-\infty,-2) \cup[4, \infty)$
C. $[4, \infty)$
D. $(-\infty,-2] \cup[4, \infty)$

Answer: B
3. The area of the region (in square units) above the x-axis bounded by the curve $y=\tan x, 0 \leq x \leq \frac{\pi}{2}$ and the tangent to the curve at $x=\frac{\pi}{4}$ is
A. $\frac{1}{2}\left(\log 2-\frac{1}{2}\right)$
B. $\frac{1}{2}(1+\log 2)$
C. $\frac{1}{2}(1-\log 2)$
D. $\frac{1}{2}\left(\log 2+\frac{1}{2}\right)$

Answer: A

D Watch Video Solution

4. Two men are on the opposite sides of a tower. They measure the angles of elevation of the top of the tower as 45° and 30° respectively. If the height of the tower is 40 m , then the distance between the men is
A. 40 m
B. $40 \sqrt{3} m$
C. 68.28 m
D. 109.28 m

Answer: D

(Watch Video Solution

5. Let $C_{1}, C_{2}, C_{3} \ldots$ are the usual binomial coefficients where $C_{r}=.{ }^{n} C_{r}$. Let $S=C_{1}+2 C_{2}+3 C_{3}+\ldots+n C_{n}$, then S is equal to
A. $n 2^{n}$
B. 2^{n-1}
C. $n 2^{n-1}$
D. 2^{n+1}

Answer: C

D Watch Video Solution

6. If $p=\sin ^{2} x+\cos ^{4} x$, then
A. $\frac{3}{4} \leq p \leq 1$
B. $\frac{3}{16} \leq p \leq \frac{1}{4}$
C. $\frac{1}{4} \leq p \leq \frac{1}{2}$
D. None of these

Answer: A

D Watch Video Solution

7. If $p \Rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are
A. T, F, F
B. F, T, T
C. F, F, F
D. T, T, F

Answer: A

- Watch Video Solution

8. A box contains tickets numbered 1 to N . n tickets are drawn from the box with replacement. The probability that the largest number on the tickets is k, is
A. $\left(\frac{k}{N}\right)^{n}$
B. $\left(\frac{k-1}{N}\right)^{n}$
C. 0
D. None of these

Answer: D

D Watch Video Solution

9. The coordinates of the focus of the parabola described parametrically by $x=5 t^{2}+2 . y=10 t+4$ are
A. $(7,4)$
B. $(3,4)$
C. $(3,-4)$
D. $(-7,4)$

Answer: A

10. The rate of change of $\sqrt{x^{2}+16}$ with respect to $\frac{x}{x-1}$ at $x=3$ is
A. 2
B. $\frac{11}{5}$
C. $-\frac{12}{5}$
D. -3

Answer: C

- Watch Video Solution

11. If $\left|\frac{z-i}{z+2 i}\right|=1,|z|=\frac{5}{2}$ then the value of $|z+3 i|$
A. $\sqrt{10}$
B. $\frac{7}{2}$
C. $\frac{15}{4}$
D. $2 \sqrt{3}$

Answer: B

- Watch Video Solution

12. Let a, b, c are respectively the sums of the first n terms, the next n terms and the next n terms of a GP. Show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
A. arithmetic progression
B. geometric progression
C. harmonic progression
D. none of these

Answer: B

13. The function $f(x)=\{x\} \sin (\pi[x])$, where [.] denotes the greatest integer function and \{.\} is the fractional part function, is discontinuous at
A. all x
B. all integer points
C. no x
D. x which is not an integer

Answer: C

D Watch Video Solution

14. There are number of seats and m number of people have to be seated, then how many ways are possible to do this $(m<n)$?
A. . ${ }^{n} P_{m}$
B. . ${ }^{n} C_{m}$
C. ${ }^{n} C_{n} \times(m-1)$!
D. . ${ }^{n-1} P_{m-1}$

Answer: A

(D) Watch Video Solution

15. Let $I=\int_{0}^{1} \frac{\sin }{\sqrt{x}} d x \operatorname{and} J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x$ Then which one of the following is true?
A. $I>\frac{2}{3}$ and $J<2$
B. $I>\frac{2}{3}$ and $J>2$
C. $I<\frac{2}{3}$ and $J<2$
D. $I>\frac{2}{3}$ and $J>2$

Answer: C

16. If $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right| \lambda \neq 0$ then k is equal to :
A. $4 \lambda a b c$
B. $-4 \lambda^{2}$
C. $4 \lambda^{2}$
D. $-4 \lambda a b c$

Answer: C

D Watch Video Solution

17. Coefficent of variation of two distributions are 60% and 75%, and their standard deviations are 18 and 15 respectively. Find their arithmetic means.
A. 30,30
B. 30,20
C. 20, 30
D. 20, 20

Answer: B

- Watch Video Solution

18. $\left\{x \in R: \cos 2 x+2 \cos ^{2} x=2\right\}$ is equal to
A. $\left\{2 n \pi+\frac{\pi}{3}: n \in Z\right\}$
B. $\left\{n \pi \pm \frac{\pi}{6}: n \in Z\right\}$
C. $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$
D. $\left\{2 n \pi-\frac{\pi}{3}: n \in Z\right\}$
19. $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x^{2}}+\frac{x-1}{x}=$
A. ∞
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

20. The abscissa of the points, where the tangent to curve $y=x^{3}-3 x^{2}-9 x+5$ is parallel to X -axis are

$$
\text { A. } x=0
$$

B. $x=1$ and -1
C. $x=1$ and -3
D. $x=-1$ and 3

Answer: D

Watch Video Solution
21. The value of $x, \forall x \in R$ which satisfy the equation $(x-1)\left|x^{2}-4 x+3\right|+2 x^{2}+3 x-5=0$ is

D Watch Video Solution

22. Let $f(x)=\frac{9 x}{25}+c, c>0$. If the curve $y=f^{-1}(x)$ passes through $\left(\frac{1}{4},-\frac{5}{4}\right)$ and $\mathrm{g}(\mathrm{x})$ is the antiderivative of $f^{-1}(x)$ such that $g(0)=\frac{5}{2}$, then the value of $[g(1)]$ is, (where [.] represents the greatest integer function)

(D) Watch Video Solution

23. Let $x+\frac{1}{x}=2, y+\frac{1}{y}=-2$ and $\sin ^{-1} x+\cos ^{-1} y=m \pi$, then the value of m is

- Watch Video Solution

24.

$\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$
and $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$, then find the value of $8\left(x^{3}-x y+z x\right)$

- Watch Video Solution

25. A circle touches the hypotenuse of a right angled triangle at its middle point and passes through the middle point of shorter side. If 3 unit and 4 unit be the length of the sides and ' r be the radius of the circle, then find the value of3r
