

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 13

Mathematics

1. If the 2^{nd} , 5^{th} and 9^{th} terms of a non-constant arithmetic progression are in geometric progression, then the common ratio of this geometric progression A. 1

B.
$$\frac{7}{4}$$

C. $\frac{8}{5}$
D. $\frac{4}{3}$

Answer: D

Watch Video Solution

2. All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is:

A. 175

B. 162

C. 180

D. 160

Answer: C

Watch Video Solution

3. Let w denote the words in the english dictionary. Define the relation R by: $R = \{(x, y) \in W \times W \mid words x and y have at least one letter in common\}.$ Then R is: (1) reflexive, symmetric and not transitive (2) reflexive, symmetric and transitive (3) reflexive, not symmetric and transitive (4) not reflexive, symmetric and transitive

A. reflexive , symmetric and not transitive

B. reflexive, symmetric and transitive

C. reflexive , not symmetric and transitive

D. not reflexive , symmetric and transitive

Answer: A

4. The value of a for which $ax^2 + \sin^{-1}(x^2 - 2x + 2) + \cos^{-1}(x^2 - 2x + 2) = 1$ has a real solution is

A.
$$-\frac{2}{\pi}$$

B. $\frac{2}{\pi}$
C. $-\frac{\pi}{2}$
D. $\frac{\pi}{2}$

Answer: C

5. The general solution of the differential equation

$$(2x - y + 1)dx + (2y - x + 1)dy = 0$$
 is -
A. $x^2 + y^2 + xy - x + y = c$
B. $x^2 + y^2 - xy + x + y = c$
C. $x^2 - y^2 + 2xy - x + y = c$
D. $x^2 - y^2 - 2xy + x - y = c$

Answer: B

6. The mean of five numbers is 0 and their variance is

2 .If three of those numbers are -1,1 and 2, then the other two numbers are

A. -5 and 3

B. -4 and 2

 ${\rm C.}-3$ and 1

 $\mathsf{D.}-2 \ \mathsf{and} \ \mathsf{O}$

Answer: D

7. The first integral term in the expansion of $\left(\sqrt{3}+2^{rac{1}{3}}
ight)^9$, is

- A. 2^{nd} term
- B. 3^{rd} term
- C. 4^{th} term
- D. 5^{th} term

Answer: C

 $\cos lpha + \cos eta = a, \sin lpha + \sin eta = b ext{ and } lpha - eta = 2 heta,$ then $rac{\cos 3 heta}{\cos heta} =$

A.
$$a^2 + b^2 - 2$$

B.
$$a^2 + b^2 - 3$$

C.
$$3 - a^2 - 3$$

D.
$$rac{a^2+b^2}{4}$$

Answer: B

9. If the image of the point (1,-2,3) in the plane 2x + 3y - z = 7 is the point (α, β, γ) , then the value of $\alpha + \beta + \gamma$ is equal to

A.-6

B. 10

C. 8

 $\mathsf{D}.-4$

Answer: A

10. The value of $\int \!\! \frac{dx}{x(x^n+1)}$ is equal to

A.
$$rac{1}{n} \mathrm{log}_eigg(rac{x^n}{x^n+1}igg) + c$$

B. $rac{1}{n} \mathrm{log}_eigg(rac{x^n+1}{x^n}igg) + c$
C. $\mathrm{log}_eigg(rac{x^n}{x^n+1}igg) + c$

D. None of these

Answer: A

Watch Video Solution
11. If f is a function defined as
$$f(x) = x^2 - x + 5, f: \left(\frac{1}{2}, \infty\right)
ightarrow \left(\frac{19}{4}, \infty\right),$$
 and

g(x) is its inverse function, then g'(7) is equal to

A.
$$-\frac{1}{13}$$

B. $\frac{1}{13}$
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

Answer: C

Watch Video Solution

12. Let lpha and eta be two roots of the equation $x^2+2x+2=0.$ Then $lpha^{15}+eta^{15}$ is equal to

A. - 512

C. 512

B. 128

 $\mathsf{D.}-256$

Answer: D

Watch Video Solution

13. The value of f (0), such that
$$f(x)=rac{1}{x^2}(1-\cos(\sin x))$$
 can be made continuous at x=0 , is

A. $\frac{1}{2}$

B. 2

C.
$$\frac{1}{4}$$

D. 4

Answer: A

14. The locus of the centre of the circle which cuts the circle $x^2 + y^2 - 20x + 4 = 0$ orthogonally and touches the line x = 2 is

A.
$$y^2=16x+4$$

 $\mathsf{B.}\,x^2=16y$

$$\mathsf{C.}\,x^2 = 16y + 4$$

$$\mathsf{D}.\,y^2 = 16x$$

Answer: D

Watch Video Solution

15. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If S_1 , S_2 , S_3 are the areas of these parts numbered from top to bottom, respectively, then

B.1:1:1

C. 1:2:1

D. 1:2:3

Answer: B

Watch Video Solution

16. The value of

$$\lim_{x o\infty}\; rac{2x^{1/2}+3x^{1/3}+4x^{1/4}+....\,nx^{1/n}}{\left(2x-3
ight)^{1/2}+\left(2x-3
ight)^{1/3}+....\,+\left(2x-3
ight)^{1/n}}$$
is

A. $\sqrt{2}$

B. 2

C.
$$\frac{1}{\sqrt{3}}$$

D. O

Answer: A

17. If
$$f(x) = x^3 + 4x^2 + ax + 5$$
 is a monotonically decreasing function of x in the largest possible interval `(-2,-2//3), then the value of a is

A.
$$\lambda=4$$

 $\mathrm{B.}\,\lambda=2$

 $\mathsf{C}.\,\lambda=\,-\,1$

D. λ has no real value

Answer: A

Watch Video Solution

18. If the angles of elevation of the top of tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30° , 45° and 60° respectively, then the ratio , AB:BC is

A. 2:3

 $\mathsf{B.}\,\sqrt{3}\!:\!1$

 $\mathsf{C}.\sqrt{3}:\sqrt{2}$

D. 1: $\sqrt{3}$

Answer: B

Watch Video Solution

19. A unit vector in the xy-plane that makes an angle of $\frac{\pi}{4}$ with the vector $\hat{i} + \hat{j}$ and an angle of with the vector $3\hat{i} - 4\hat{j}$ is

A.
$$rac{\hat{i}+\hat{j}}{\sqrt{2}}$$

B. $rac{\hat{i}-\hat{j}}{\sqrt{2}}$
C. $rac{2\hat{i}-\hat{j}}{\sqrt{2}}$

D. None of these

Answer: D

20. If
$$x = \frac{1-t^2}{1+t^2}$$
 and $y = \frac{2t}{1+t^2}$, then $\frac{dy}{dx}$ is equal

to

A.
$$-\frac{y}{x}$$

B. $\frac{y}{x}$
C. $-\frac{x}{y}$
D. $\frac{x}{y}$

Answer: C

21. Let A be a matrix of order 3 imes 3 such that det (A)= 2 , $B=2A^{-1}$ and $C=rac{(adjA)}{\sqrt[3]{16}}$,then the value of $\det\left(A^3B^2C^3
ight)$ is

Watch Video Solution

22. Given f(x) where

$$= egin{cases} x|x| & ext{for} x \leq \ -1 \ [x+1] + [1-x] & ext{for} -1 < x < 1, \ [.] ext{ denotes} \ -x|x| & ext{for} x \geq 1 \end{cases}$$

the greatest integer function. If $I=\int_{-2}^{2}f(x)dx$,then

|3I| =

Watch Video Solution

23. The line 3x + 2y = 24 meets the y-axis at A and the x-axis at B. The perpendicular bisector of ABmeets the line through (0, -1) parallel to the x-axis at C. If the area of triangle ABC is A, then the value of $\frac{A}{13}$ is_____

24. The minimum number of times a fair coin needs to be tossed, so that the probability of getting at least

two heads is at least 0.96, is _____.

Watch Video Solution

25. Consider the equation $x^2 + 2x - n = 0$ where $n \in N$ and $n \in [5, 100]$. The total number of different values of n so that the given equation has integral roots is