びdoubtnut

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 21

Mathematics

1. Let $P_{1}: 2 x+y+z+1=0$
$P_{2}: 2 x-y+z+3=0$
and
$P_{3}: 2 x+3 y+z+5=0$ be three planes, then the
distance of the line of intersection of planes $P_{1}=0$ and $P_{2}=0$ from the plane $P_{3}=0$ is
A. $\frac{3}{\sqrt{14}}$ units
B. $\frac{6}{\sqrt{14}}$ units
C. $\frac{3}{\sqrt{7}}$ units
D. $\frac{6}{\sqrt{7}}$ units

Answer: B

- Watch Video Solution

2. The parabolas $C_{1}: y^{2}=4 a(x-a)$ and $C_{2}: y^{2}=-4 a(x-k)$ intersect at two distinct points A and B. If the slope of the tangent at A on
C_{1} is same as the slope of the normal at B on C_{2}, then the value of k is equal to
A. 3 a
B. 2 a
C. a
D. 0
3. Let p, q and r be three statements, then $(p \rightarrow q) \rightarrow r$ is equivalent to
A. $(p \vee r) \wedge(q \vee r)$
B. $(p \vee r) \wedge(\sim q \vee r)$
C. $(p \wedge r) \vee(q \vee r)$
D. $(p \vee r) \rightarrow r$

Answer: B

- Watch Video Solution

4. Let two sides of a rectangle of area 20 sq. units are along lines $x-y=0$ and $x+y=2$, then the locus of the point of intersection of diagonals is a
A. pair of ellipse
B. pair of straight lines
C. pair of hyperbola having eccentricity

2 and $\frac{2}{\sqrt{3}}$
D. pair of hyperbola each having eccentricity $\sqrt{2}$

Answer: D
5. Let $2 \vec{a}=\vec{b} \times \vec{c}+2 \vec{b}$ where \vec{a}, \vec{b} and \vec{c} are three unit vectors, then sum of all possible values of $|3 \vec{a}+4 \vec{b}+5 \vec{c}|$ is
A. 10
B. 12
C. 14
D. 16

Answer: C
6. If $f(1+x)=f(1-x)(\forall x \in R)$, then the value of the integral
$I=\int_{-7}^{9} \frac{f(x)}{f(x)+f(2-x)} d x$ is
A. 0
B. 2
C. 8
D. 10

Answer: C
7. If $f(x)$ is a real valued function such that
$f(x+6)-f(x+3)+f(x)=0, \forall x \in R$, then
period of $f(x)$ is
A. 6
B. 12
C. 18
D. 24

Answer: C

- Watch Video Solution

8. The value of $\lim _{x \rightarrow 0} \frac{\tan ^{2} 3 x}{\sqrt{5}-\sqrt{4+\sec x}}$ is equal to
A. $2 \sqrt{5}$
B. $-9 \sqrt{5}$
C. $9 \sqrt{5}$
D. $-36 \sqrt{5}$

Answer: D
(Watch Video Solution
9. If $-\pi<\theta<\pi$, the equation
$(\cos 3 \theta+1) x^{2}+2(\cos 2 \theta-1) x$
$+(1-2 \cos \theta)=0$
has more than two roots for
A. no value of θ
B. one value of θ
C. two value of θ
D. all value of θ

Answer: A
10. If $\operatorname{In}\left(2 x^{2}-5\right), \operatorname{In}\left(x^{2}-1\right)$ and $\operatorname{In}\left(x^{2}-3\right)$ are the first three terms of an arithmetic progression, then its fourth term is
A. $\ln 8-\ln 3$
B. $\ln 3-\ln 8$
C. In 24
D. $2 \ln 6$

Answer: A

- Watch Video Solution

11. Image of line $\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-1}{-4}$ in the plane $x+y+z=7$ is

$$
\begin{aligned}
& \text { A. } \frac{x-4}{1}=\frac{y-3}{1}=\frac{z-3}{1} \\
& \text { B. } \frac{x-3}{1}=\frac{y-4}{1}=\frac{z-3}{1} \\
& \text { C. } \frac{x-4}{3}=\frac{y-3}{1}=\frac{z-3}{-4} \\
& \text { D. } \frac{x-3}{1}=\frac{y-4}{1}=\frac{z-3}{-4}
\end{aligned}
$$

Answer: C

- Watch Video Solution

12. If $\pi<\theta<\frac{3 \pi}{2}$ and $\cos \theta=-\frac{3}{5}$, then $\tan \left(\frac{\theta}{4}\right)$ is equal to
A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{-\sqrt{5}-1}{4}$
D. $\frac{-\sqrt{5}+1}{4}$

Answer: B

- Watch Video Solution

13. If the value of integral
$\int\left(x+\sqrt{x^{2}-1}\right)^{2} d x=a x^{3}-x+b\left(x^{2}-1\right)^{\frac{1}{b}},+C$
(where, C is the constant of integration), then $a \times b$ is equal to
A. 1
B. $\frac{4}{9}$
C. 2
D. $\frac{9}{4}$

Answer: B
A. $[-\pi / 2, \pi / 2]$
B. $[0, \pi / 2)$
C. $(0, \pi / 2]$
D. $(-\pi / 2, \pi / 2)$

Answer: B

- Watch Video Solution

15. The solution of the differential equation $\frac{1}{x^{2}}\left(\frac{d y}{d x}\right)^{2}+6=\left(\frac{5}{x}\right) \frac{d y}{d x}$ is $y=\lambda x^{2}+c$
(where, c is an arbitary constant). The sum of all the possible value of λ is

> A. $\frac{3}{2}$
> B. $\frac{5}{2}$
> C. $\frac{2}{5}$
D. 2

Answer: B
16. The number of tangents with positive slope that
can be drawn from the origin to the curve $y=\sin x$ is
A. 0
B. 2
C. 4
D. infinitely many

Answer: D

- Watch Video Solution

17. A complex number z is said to be unimodular if .

Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}$ is unimodular and z_{2} is not unimodular.

Then the point z_{1} lies on a: (1) straight line parallel to x-axis (2) straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$
A. circle of radius $\sqrt{2}$
B. straight line parallel to x-axis
C. straight line parallel to y-axis
D. circle of radius 2
18. Equation of the straight line which meets the
circle $x^{2}+y^{2}=8$ at two points where these points are at a distance of 2 units from the point $A(2,2)$ is
A. $x+y=2$
B. $x+y=3$
C. $x+y=1$
D. $x+y=0$
19. If $x_{1}, x_{2}, \ldots . x_{n}$ are n observations such that $\sum_{i=1}^{n}\left(x_{i}\right)^{2}=400$ and $\sum_{i=1}^{n} x_{i}=100$ then possible values of n among the following is
A. 18
B. 20
C. 24
D. 27

Answer: D
20. If the system of equation $x-2 y+5 z=3$
$2 x-y+z=1 \quad$ and $\quad 11 x-7 y+p z=q \quad$ has infinitely many solution, then
A. $p+q=2$
B. $p+q=10$
C. $p-q=2$
D. $p-q=5$

Answer: C

21. A term of randomly chosen from the expansion
of $\left(\sqrt[6]{4}+\frac{1}{\sqrt[4]{5}}\right)^{20}$. If the probability that it is a rational term is P , then 420P is euqal to

- Watch Video Solution

22. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{1}=1$ passes through the point $(-2,0)$, then the value of a^{2} is equal to
23. The number obtained after dividing the number formed by the last three digits of 17^{256} by 100 is

- Watch Video Solution

24. The area (in sq. units) bounded by
$y=2-|x-2|$ and the x -axis is

- Watch Video Solution

25. Let $y=x^{3}-6 x^{2}+9 x+1$ be an equation of a
curve, then the x-intercept of the tangent to this
curve whose slope is least, is

- Watch Video Solution

