© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 24

Maths

1. The integral value of m for which the quadratic equation $(2 m-3) x^{2}-4 x+2 m-3=0$ has both the roots negative is given by

- Watch Video Solution

2. Let from a point $A(h, k)$ chord of contacts are drawn to the ellipse $x^{2}+2 y^{2}=6$ such that all these chords touch the ellipse
$x^{2}+4 y^{2}=4$, then locus of the point A is
A. $4 x^{2}+9 y^{2}=36$
B. $x^{2}+y^{2}=4$
C. $x^{2}-y^{2}=9$
D. $x^{2}+y^{2}=9$

Answer: D

D Watch Video Solution

3. If $y(x)$ is the solution of the differential equation $\frac{d y}{d x}=-2 x(y-1)$ with $y(0)=1$, then $\lim _{x \rightarrow \infty} y(x)$ equals

- Watch Video Solution

4. $\int \frac{\sin ^{2} x \cdot \sec ^{2} x+2 \tan x \cdot \sin ^{-1} x \cdot \sqrt{1-x^{2}}}{\sqrt{1-x^{2}}\left(1+\tan ^{2} x\right)} d x$
A. $\left(\sin ^{-1} x\right)\left(\cos ^{2} x\right)+C$
B. $\left(\sin ^{-1} x\right)\left(\sin ^{2} x\right)+C$
C. $\left(\cos ^{-1} x\right)\left(\sin ^{2} x\right)+C$
D. $-\sin ^{-1} x\left(\sin ^{2} x\right)+C$

Answer: B

D Watch Video Solution

5. The value of $\lim _{x \rightarrow 0} \frac{x \cot (4 x)}{\tan ^{2}(3 x) \cot ^{2}(6 x)}$ is equal to
A. 0
B. 4
C. $\frac{2}{9}$
D. 1

- Watch Video Solution

6. If n objects are arrange in a row, then the number of ways of selecting three of these objects so that no two of them are next to each other is
A. ${ }^{n-3} C_{3}$
B. . ${ }^{n-3} C_{2}$
C. ${ }^{n-2} C_{2}$
D. . ${ }^{n-2} C_{3}$

Answer: D

- Watch Video Solution

7. Solve $\sin ^{-1}(1-x)-2 s \epsilon^{-1} x=\frac{\pi}{2}$
A. 0
B. $\frac{1}{2}$
C. $0, \frac{1}{2}$
D. $-\frac{1}{2}$

Answer: A

- Watch Video Solution

8. If $1, a, b$ and 4 are in harmonic progression, then the value of $a+b$ is equal to
A. $\frac{5}{4}$
B. $\frac{10}{3}$
C. $\frac{3}{10}$
D. $\frac{4}{5}$

Answer: B

Watch Video Solution
9. fractional part of $\frac{2^{78}}{31}$ is:
A. $\frac{2}{31}$
B. $\frac{4}{31}$
C. $\frac{6}{31}$
D. $\frac{8}{31}$

Answer: D

- Watch Video Solution

10. Let $\mathrm{f}(\mathrm{x})=10-|\mathrm{x}-5|, x \in R$, then the set of all values of x at which f
$(f(x))$ is not differentiable is
A. $\{0,5,10\}$
B. $\{5,10\}$
C. $\{0,5,10,15\}$
D. $\{5,10,15\}$

Answer: A

(D) Watch Video Solution

11. If two tangents drawn from the point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the parabola $y^{2}=8 x$ are such that the slope of one of the tangent is 3 times the slope of the other, then the locus of point P is
A. $3 y^{2}=16 x$
B. $3 y^{2}=8 x$
C. $y^{2}=32 x$
D. $3 y^{2}=32 x$

Answer: D

D Watch Video Solution

12. If $I_{1}=\int_{1-x}^{k} x \sin \{x(1-x)\} d x$ and $I_{2}=\int_{1-x}^{k} \sin \{x(1-x)\} d x$, then
A. 2
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

13. Let A is a matrix of order 3×3 defined as $A=\left[a_{i j}\right] 3 \times 3$, where $a_{i j}=\lim _{x \rightarrow 0} \frac{1-\cos (i x)}{\sin (i x) \tan (j x)}(\forall 1 \leq i, j, \leq 3)$, then $A^{2} \quad$ is equal to
A. A
B. $\frac{3}{2} A$
C. $\frac{2}{3} A$
D. $\frac{1}{4} A$

Answer: B

(D) Watch Video Solution

14.

$[(\vec{a}+2 \vec{b}+3 \vec{c}) \times(\vec{b}+2 \vec{c}+3 \vec{a})], \cdot(\vec{c}+2 \vec{a}+3 \vec{b})]=54$
where \vec{a}, \vec{b} and \vec{c} are 3 non -coplanar vectors, then the values of

$$
\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\
\vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}
\end{array}\right| \text { is equal to }
$$

A. 9
B. 3
C. 6
D. 12

Answer: A

- Watch Video Solution

15. Let A be the point $(1,2,3)$ and B be a point on the line $\frac{x-1}{-2}=\frac{y+1}{3}=\frac{z-5}{4}=k$ Then value of k such that line AB is perpendicular to the plane $4 x+9 y-18 z=6$ is
A. $-\frac{2}{5}$
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. no such value of k is possible

Answer: C

- Watch Video Solution

16. Let the circumcentre of $\triangle A B C$ is $S(-1,0)$ and the midpoints of sides $A B$ and $A C$ are $E(1,-2)$ and $F(-2,1)$ respectively, then the equation of the circumcircle of $\triangle A B C$ us
A. $(x+1)^{2}+y^{2}=5$
B. $(x+1)^{2}+y^{2}=10$
C. $(x+1)^{2}+y^{2}=15$
D. $(x+1)^{2}+y^{2}=1$

Answer: B

- Watch Video Solution

17. If p and q are two statements, then which of the following statements is not equivalent to $p \Leftrightarrow(p \Rightarrow q)$?
A. $p \wedge q$
B. $(p \Leftrightarrow q) \wedge(p \vee q)$
C. $(p \Rightarrow q) \Leftrightarrow q$
D. $(-p \Rightarrow q) \wedge(p \vee \sim q)$

Answer: D

18. Let $F(n)=(\sin 1) \times(\sin 2) \times \ldots \sin (n), \forall \mathrm{n} \in \mathrm{N}$ then number of elements in the set $A=\{f(1), f(2), \ldots \ldots \ldots ., f(6)\}$ that are positive are

- Watch Video Solution

19. $a, b, c, \in N$ and $d=\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$, then the least positive value of D is
A. 4
B. 6
C. 3
D. 8

Answer: A

20. $F: R \rightarrow R, F(x)=\lambda x+\sin x$ is onto if λ is an element of the set P and $f(x)$ is one- one if λ is an element of the set Q, then (given , λ is a real number)
A. $P=Q$
B. $P \subset Q$
C. $P-Q=\{0\}$
D. $Q \subset P$

Answer: D

- Watch Video Solution

21. Consider circles $C_{1} \& C_{2}$ touching both the axes and passing through $(4,4)$, then the product of radii of these circles is
22. If $P(z)$ is a variable point in the complex plane such that $I M$ $\left(-\frac{1}{z}\right)=\frac{1}{4}$, then the value of the perimeter of the locus of $\mathrm{P}(\mathrm{z})$ is (use $\pi=3.14$)

- Watch Video Solution

23. The probability of India winning a test match against Australia is $\frac{1}{4}$. Assuming the matches to be independent events, the probability that in a 7 match series India's second win occurs at $4^{\text {th }}$ test is P, then 256 P is equal to
A. 15
B. 12
C. 27
D. 40

Answer: C

D Watch Video Solution

24. The number of solutions of the equation $|\cot x|=\cot x+\operatorname{cosec} x$ in $[0,10 \pi]$ is /are

- Watch Video Solution

25. If α is the only real root of $x^{3}+b x^{2}+c x+1=0(b<c)$, then the value of $|[\alpha]|$ is (where,[]. represents the greatest integer function)
