©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 26

Mathematics

1. If a tower subtends equal angles at four points P, Q, R and S that lie in a plane containing the foot of the tower, the which fo the following statements is always true (here, the tower is perpendicular to the plane containing the points $P, Q, R, S)$
A. $\angle P Q S=\angle P R S$
B. $\angle P Q R+\angle P S R=180^{\circ}$
C. $\angle P Q S=90^{\circ} \Rightarrow \angle P R S=90^{\circ}$
D. $(P Q)(R S)+(P S)(R Q)=(P R)(Q S)$

Answer: C

- Watch Video Solution

2. The values of λ for which one root of the equation $x^{2}+(1-2 \lambda) x+\left(\lambda^{2}-\lambda-2\right)=0$ is greater than 3 and the other smaller than 2 are given by
A. $2<\lambda<5$
B. $1<\lambda<4$
C. $1<\lambda<5$
D. $2<\lambda<4$

Answer: D

- Watch Video Solution

3. Let a
function
$f:(2, \infty) \rightarrow[0, \infty)$ defined as $f(x)=\frac{|x-3|}{|x-2|}$, then f is
A. injective \& surjective
B. not injective but surjective
C. injective but not surjective
D. neither injective nor surjective

Answer: B

(Watch Video Solution

4. Let n be a positive integer and a complex number with unit modulus is a solution of the equation $Z^{n}+Z+1=0$, then the value of n can be
A. 87
B. 97
C. 104
D. 222

Answer: C
5. The value of $\lim _{x \rightarrow 0} \frac{e^{-\left(\frac{x^{2}}{2}\right)}-\cos x}{x^{3} \tan x}$ is equal to
A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{16}$

Answer: C

- Watch Video Solution

6. The value of $\int \frac{(x-4)}{x^{2} \sqrt{x-2}} \mathrm{dx}$ is equal to (where, C is the constant of integration)
A. $2 x \sqrt{x-2}+C$
B. $-\frac{2}{x} \sqrt{x-2}+C$
C. $\frac{\sqrt{x-2}}{x}+C$
D. $\frac{x}{\sqrt{x-2}}+C$

Answer: B

- Watch Video Solution

7. The equation of the curve passing through the point $(1,1)$ and satisfying the differential equation $\frac{d y}{d x}=\frac{x+2 y-3}{y-2 x+1}$ is
A. $x^{2}-4 x y-y^{2}+6 x+2 y-4=0$
B. $x^{2}+4 x y-y^{2}-6 x+2 y+4=0$
C. $x^{2}+4 x y-y^{2}-6 x-2 y+4=0$
D. $x^{2}+4 x y+y^{2}-6 x-2 y-4=0$

Answer: C

- Watch Video Solution

8. Five different games are to be distributed among 4 children randomly. The probability that each child get at least one game is
A. $\frac{1}{4}$
B. $\frac{15}{64}$
C. $\frac{21}{64}$
D. $\frac{17}{632}$

Answer: B

(Watch Video Solution

9. Let the focus S of the parabola $y^{2}=8 x$ lies on the focal chord PQ of the same parabola. If $\mathrm{PS}=6$, then the square of the slope of the chord $P Q$ is
A. $\frac{2}{\sqrt{5}}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{9}{4}$

Answer: B
10. If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively
A. TFF
B. FFF
C. FTT
D. TTF

Answer: A

- Watch Video Solution

11. $\frac{5}{3^{2} 7^{2}}+\frac{9}{7^{2} 11^{2}}+\frac{13}{11^{2} 15^{2}}+\ldots . \infty$
A. $\frac{1}{8}$
B. $\frac{1}{36}$
C. $\frac{1}{54}$
D. $\frac{1}{72}$

Answer: D

- Watch Video Solution

12. If $13^{99}-19^{93}$ is divided by 162 , then the remainder is
A. 3
B. 6
C. 5
D. 0

Answer: D

(D) Watch Video Solution

13. The $\int_{0}^{\pi / 2} \operatorname{sgn}\left(\sin ^{2} x-\sin x+\frac{1}{2}\right) \mathrm{dx}$ is equal to ,
(where, $\operatorname{sgn}(x)$ denotes the sigum function of x)
A. 0
B. 1
C. π
D. $\frac{\pi}{2}$
14.

$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{a} \cdot \vec{b}=2$ and $\vec{a} \times \vec{b}=2 \hat{i}-\hat{k}$, then \vec{b} is
A. $(\hat{i}-2 \hat{j}+\hat{k})$
B. $(4 \hat{i}-4 \hat{j}+2 \hat{k})$
C. $\frac{1}{2}(3 \hat{i}+7 \hat{j}+9 \hat{k})$
D. $\frac{1}{29}(7 \hat{i}-4 \hat{j}+14 \hat{k})$

Answer: D

- Watch Video Solution

15. Equation of the plane passing through the point of intersection of lines $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2} \& \frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ and perpendicular to the line $\frac{x+5}{2}=\frac{y-3}{3}=\frac{z+1}{1}$ is
A. $2 x+3 y+z+7=0$
B. $2 x-3 y-z+22=0$
C. $2 x+3 y+z-22=0$
D. $2 x+3 y+z+13=0$

Answer: C
16. The equation of the tangent to the parabola $y^{2}=4 x$ whose slope is positive and which also touches $x^{2}+y^{2}=\frac{1}{2}$ is
A. $y=x+1$
B. $y=2 x+1$
C. $x+y=2$
D. $y=4 x+\frac{1}{2}$

Answer: A

- Watch Video Solution

17. If A is 2×2 matrix such that $A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}-1 \\ 2\end{array}\right]$ and $A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then trace of

A is (where the trace of the matrix is the sum of all principal diagonal elements of the matrix)
A. 1
B. 0
C. 2
D. 5

Answer: A
18.
$P_{1}: 2 x-y+z=6$ and $P_{2}: x+2 y-z=4$
having normal \vec{N}_{1} and \vec{N}_{2} respectively. The distance of the origin from the plane passing through the point $(1,1,1)$ and whose normal is perpendicular to N_{1} and N_{2} is
A. $\frac{7}{\sqrt{5}}$ units
B. $\sqrt{\frac{7}{5}}$ units
C. $\sqrt{\frac{3}{5}}$ units
D. $\frac{14}{\sqrt{35}}$ units

Answer: B
19.
$I_{1}=\int_{0}^{\frac{\pi}{2}} \frac{d t}{1+t^{6}}$ and $I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{x \cos x d x}{1+(x \sin x+\cos x)^{6}}$,
then
A. $2 I_{1}=I_{2}$
B. $I_{1}=2 I_{2}$
C. $I_{1}=I_{2}$
D. $I_{1}=I_{2}=0$

Answer: C

20. A wire of length 28 cm is bent to form a circular sector, then the radius (in cm) of the circular sector such that the area of the circular sector is maximum is equal to
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

21. Let $x^{2}+y^{2}=r^{2}$ and $x y=1$ intersect at $A \& B$ in first quadrant, If $A B=\sqrt{14}$ then find the value of r.

- Watch Video Solution

22.

$\left.f(x)=\left\{\frac{a+b \cos x+c \sin x}{x^{2}},, x>0\right),(9,, x \geq 0)\right\}$ is
continuous at $\mathrm{x}=0$, then the value of $\frac{|a|+|b|}{5}$ is

D Watch Video Solution

23. Let p and q be the length of two chords of a circle which subtend angles 36° and 60° respectively at the centre of the circle. Then, the angle (in radian) subtended by the chord of length $p+q$ at the centre of the circle is (use $\pi=3.1$)
24.

$a_{r}=r^{4} C_{r}, b_{r}=(4-r)^{4} C_{r}, A_{r}=\left[\begin{array}{ll}a_{r} & 2 \\ 3 & b_{r}\end{array}\right]$ and $A=\sum_{r=0}^{4} A_{r}$ then the value of $|A|$ is equal to

- Watch Video Solution

25. The product of all the values of $|\lambda|$, such that the lines

$$
x+2 y-3=0,3 x-y-1=0 \quad \text { and } \quad \lambda x+y-2=0
$$

cannot form a triangle, is equal to

