

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 26

Mathematics

1. If a tower subtends equal angles at four points P, Q, Rand S that lie in a plane containing the foot of the tower, the which fo the following statements is always true (here, the tower is perpendicular to the plane containing the points P, Q,R,S) A. $\angle PQS = \angle PRS$

B. $\angle PQR + \angle PSR = 180^{\circ}$

 $\mathsf{C}. ot PQS = 90^\circ \Rightarrow ot PRS = 90^\circ$

 $\mathsf{D}.\,(PQ)(RS)+(PS)(RQ)=(PR)(QS)$

Answer: C

Watch Video Solution

2. The values of λ for which one root of the equation $x^2 + (1-2\lambda)x + (\lambda^2 - \lambda - 2) = 0$ is greater than 3 and the other smaller than 2 are given by

A. $2 < \lambda < 5$

B. $1 < \lambda < 4$

 ${\rm C.}\,1<\lambda<5$

D. $2 < \lambda < 4$

Answer: D

A. injective & surjective

B. not injective but surjective

C. injective but not surjective

D. neither injective nor surjective

Answer: B

4. Let n be a positive integer and a complex number with unit modulus is a solution of the equation $Z^n + Z + 1 = 0$, then the value of n can be

A. 87

B. 97

C. 104

D. 222

Answer: C

5. The value of
$$\frac{\lim_{x \to 0} \frac{e^{-\left(\frac{x^2}{2}\right)} - \cos x}{x^3 \tan x}}{\text{ is equal to}}$$

A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{16}$

Answer: C

6. The value of $\int rac{(x-4)}{x^2\sqrt{x-2}}$ dx is equal to (where , C is the

constant of integration)

A.
$$2x\sqrt{x-2}+C$$

B. $-rac{2}{x}\sqrt{x-2}+C$
C. $rac{\sqrt{x-2}}{x}+C$
D. $rac{x}{\sqrt{x-2}}+C$

Answer: B

7. The equation of the curve passing through the point (1,1) and satisfying the differential equation $\frac{dy}{dx} = \frac{x+2y-3}{y-2x+1}$ is

A.
$$x^2 - 4xy - y^2 + 6x + 2y - 4 = 0$$

B. $x^2 + 4xy - y^2 - 6x + 2y + 4 = 0$

C.
$$x^2 + 4xy - y^2 - 6x - 2y + 4 = 0$$

D.
$$x^2 + 4xy + y^2 - 6x - 2y - 4 = 0$$

Answer: C

Watch Video Solution

8. Five different games are to be distributed among 4 children randomly. The probability that each child get at least one game is

A.
$$\frac{1}{4}$$

B. $\frac{15}{64}$
C. $\frac{21}{64}$
D. $\frac{17}{632}$

Answer: B

9. Let the focus S of the parabola $y^2 = 8x$ lies on the focal chord PQ of the same parabola . If PS = 6 , then the square of the slope of the chord PQ is

A.
$$\frac{2}{\sqrt{5}}$$

B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{9}{4}$

Answer: B

10. If $p
ightarrow (q \lor r)$ is false, then the truth values of p,q,r are respectively

A. TFF

B. FFF

C. FTT

D. TTF

Answer: A

11.
$$\frac{5}{3^27^2} + \frac{9}{7^211^2} + \frac{13}{11^215^2} + \dots \infty$$

A.
$$\frac{1}{8}$$

B. $\frac{1}{36}$
C. $\frac{1}{54}$
D. $\frac{1}{72}$

Answer: D

Watch Video Solution

12. If $13^{99} - 19^{93}$ is divided by 162, then the remainder is

A. 3

B. 6

C. 5

D. 0

Answer: D

Watch Video Solution

13. The
$$\int_0^{\pi/2} sgn\!\left(\sin^2x - \sin x + rac{1}{2}
ight)$$
 dx is equal to ,

(where , sgn (x) denotes the sigum function of x)

A. 0

B. 1

 $\mathsf{C.}\,\pi$

D.
$$\frac{\pi}{2}$$

Answer: D

14.
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \overrightarrow{a} \cdot \overrightarrow{b} = 2 ext{ and } \overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} - 1$$

then \overrightarrow{b} is

If

 \hat{k} ,

$$egin{aligned} \mathsf{A}. & \left(\hat{i} - 2\hat{j} + \hat{k}
ight) \ \mathsf{B}. & \left(4\hat{i} - 4\hat{j} + 2\hat{k}
ight) \ \mathsf{C}. & rac{1}{2} \left(3\hat{i} + 7\hat{j} + 9\hat{k}
ight) \ \mathsf{D}. & rac{1}{29} \left(7\hat{i} - 4\hat{j} + 14\hat{k}
ight) \end{aligned}$$

Answer: D

15. Equation of the plane passing through the point of

intersection of lines

$$\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{2} \& \frac{x-3}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$
and perpendicular to the line $\frac{x+5}{2} = \frac{y-3}{3} = \frac{z+1}{1}$ is
A. $2x + 3y + z + 7 = 0$
B. $2x - 3y - z + 22 = 0$
C. $2x + 3y + z - 22 = 0$
D. $2x + 3y + z + 13 = 0$

Answer: C

16. The equation of the tangent to the parabola $y^2 = 4x$ whose slope is positive and which also touches $x^2 + y^2 = \frac{1}{2}$ is A. y = x + 1B. y = 2x + 1C. x + y = 2D. $y = 4x + \frac{1}{2}$

17. If A is 2×2 matrix such that $A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix}$ and $A^2\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}$, then trace of

A is (where the trace of the matrix is the sum of all principal

diagonal elements of the matrix)

A. 1

B. 0

C. 2

D. 5

Answer: A

18. consider the planes $P_1: 2x - y + z = 6$ and $P_2: x + 2y - z = 4$ having normal \overrightarrow{N}_1 and \overrightarrow{N}_2 respectively. The distance of the origin from the plane passing through the point (1,1,1) and whose normal is perpendicular to N_1 and N_2 is

A.
$$\frac{7}{\sqrt{5}}$$
 units
B. $\sqrt{\frac{7}{5}}$ units
C. $\sqrt{\frac{3}{5}}$ units
D. $\frac{14}{\sqrt{35}}$ units

Answer: B

19.

$$I_1 = \int_0^{rac{\pi}{2}} rac{dt}{1+t^6} \, ext{ and } \, I_2 = \int_0^{rac{\pi}{2}} rac{x\cos x dx}{1+\left(x\sin x+\cos x
ight)^6},$$

then

A. $2I_1=I_2$ B. $I_1=2I_2$ C. $I_1=I_2$

D.
$$I_1 = I_2 = 0$$

Answer: C

20. A wire of length 28 cm is bent to form a circular sector , then the radius (in cm) of the circular sector such that the area of the circular sector is maximum is equal to

A. 5

B. 6

C. 7

D. 8

Answer: C

Watch Video Solution

21. Let $x^2 + y^2 = r^2$ and xy = 1 intersect at A&B in first quadrant, If $AB = \sqrt{14}$ then find the value of r.

23. Let p and q be the length of two chords of a circle which subtend angles 36° and 60° respectively at the centre of the circle . Then , the angle (in radian) subtended by the chord of length p + q at the centre of the circle is (use $\pi = 3.1$)

24.

$$a_r = r^4 C_r, b_r = (4-r)^4 C_r, A_r = egin{bmatrix} a_r & 2 \ 3 & b_r \end{bmatrix} ext{ and } A = \sum_{r=0}^4 A_r$$

Let

then the value of |A| is equal to

25. The product of all the values of $|\lambda|$, such that the lines $x+2y-3=0, \, 3x-y-1=0$ and $\lambda x+y-2=0$ cannot form a triangle, is equal to

