© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 6

Mathematics

1. $\sin \alpha x+\cos \alpha x$ and $|\cos x|+|\sin x|$ are periodic
functions of same fundamental period, if α equals
A. 0
B. 1
C. 2
D. 4

Answer: D

D Watch Video Solution

2. Differential coefficient of $\log _{10} x$ w.r.t $\log _{x} 10$ is
A. 1
B. $-\left(\log _{10} x\right)^{2}$
C. $\left(\log _{x} 10\right)^{2}$
D. $\frac{x^{2}}{100}$

- Watch Video Solution

3. If A, B and C are the angles of a triangle and
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C \sin ^{2} C\end{array}\right|=0$ then $\Delta \mathrm{ABC}$ must be .
A. right angled isosceles
B. isosceles
C. equilateral
D. scalene

Answer: B

D Watch Video Solution

4. The contrapositive of the statement "If two triangles are identical, then they are similar" is
A. If two triangles are not similar, then they are not identical
B. If two triangles are not identical, then they are not similar
C. If two triangles are not identical, then they are
D. If two triangles are not similar, then they are

identical

Answer: A

D Watch Video Solution

5. If $f(x)=a-(x-3)^{8 / 9}$, then the maximum value of $f(x)$ is
A. 3
B. $a-3$
C. a
D. none of these

Answer: C

- Watch Video Solution

6. Write the value of $\sin \left(\cot ^{-1} x\right)$.
A. $\sqrt{1+x^{2}}$
B. x
C. $\frac{1}{\sqrt{1+x^{2}}}$
D. $\sqrt{1-x^{2}}$

Answer: C

7. The area bounded by the curves
$y=x^{2}$ and $y=\frac{2}{\left(1+x^{2}\right)}$ is
A. $\left(\pi-\frac{1}{3}\right)$ sq. units
B. $\left(\pi-\frac{2}{3}\right)$ sq. units
c. $\frac{(2 \pi-1)}{3}$ sq. units
D. none of these

Answer: B

- Watch Video Solution

8. Evaluate: $(\operatorname{Lim})_{x \rightarrow 0} \frac{x^{6000}-(\sin x)^{6000}}{x^{2}(\sin x)^{6000}}$
A. 1000
B. 100
C. 1100
D. 1010

Answer: A

D Watch Video Solution

9. If $[x]$ stands for the greatest integer function, the
value of $\int_{4}^{10} \frac{\left[x^{2}\right]}{\left[x^{2}-28 x+196\right]+\left[x^{2}\right]} d x$, is
A. $\frac{1}{3}$
B. 6
C. 7
D. 3

Answer: D
(D) Watch Video Solution
10. The shaded region in the give figure represents

A. $A \cap(B \cup C)$
B. $A \cup(B \cap C)$
C. $A \cap(B-C)$
D. $A-(B \cup C)$

Answer: D

D Watch Video Solution

11. If $a \sin ^{2} x+b \cos ^{2} x=c, b \sin ^{2} y+a \cos ^{2} y=d$ and $a \tan x=b \tan y$
then
$\frac{a^{2}}{b^{2}}=\ldots \ldots . .\left(0<x, y<\frac{\pi}{2}\right)$
A. $\frac{(b-c)(d-b)}{(a-d)(a-b)}$
B. $\frac{(a-d)(c-a)}{(b-c)(d-b)}$
C. $\frac{(d-a)(c-a)}{(b-c)(d-b)}$
D. $\frac{(b-c)(b-d)}{(a-c)(a-d)}$

Answer: B
12. Number of points from where perpendicular
tangents can be drawn to the curve $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ is
A. 1
B. 2
C. 0
D. infinte

Answer: C
13. The sum of the first 20 terms common between the series $3+7+11+15+\ldots$ and $1+6+11+16+\ldots$ is
A. 4000
B. 4200
C. 4220
D. 4020

Answer: D

14. Let 10 vertical poles standing at equal distances on a straight line, subtend the same angle of elevation α at a point O on this line and all the poles are on the same side of O. If the height of the longest pole is h and the distance of foot the smallest pole form O is α then the distance between two consecutive poles, is
A. $\frac{h \sin \alpha+a \cos \alpha}{9 \cos \alpha}$
B. $\frac{h \cos \alpha-a \sin \alpha}{9 \sin \alpha}$
C. $\frac{h \sin \alpha+a \cos \alpha}{9 \sin \alpha}$
D. $\frac{h \cos \alpha-a \sin \alpha}{9 \cos \alpha}$

Answer: B
15. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$ if $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$ then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is
A. -25
B. -27
C. 28
D. 25

Answer: A
16. The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is
A. 75
B. 150
C. 210
D. 243

Answer: B
(D) Watch Video Solution
17. The order of the differential equation whose
general solution is given by
$y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{x+C_{5}}, \quad$ where
$C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, are arbitrary constants, is
A. 5
B. 4
C. 3
D. 2

Answer: C
18. In a competitive examination, an examinee either guesses or copies or knows the answer to multiple choice question with four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that he copies the answer is $1 / 6$. The probability that the answer is correct, given that he copies it, is $\frac{1}{8}$. Find the probability that he knows the answer to the question, given that he correctly answered
A. $\frac{24}{31}$
B. $\frac{17}{24}$
C. $\frac{24}{29}$
D.

Answer: C

D Watch Video Solution

19. The number of values of $\theta \in\left[\frac{-3 \pi}{2}, \frac{4 \pi}{3}\right]$ which satisfies the system of equations.
$2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2$ and
$\sin 2 \theta+\cos 2 \theta=\tan \theta$ is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

20. If the three distinct lines
$x+2 a y+a=0, x+3 b y+b=0$ and
$x+4 a y+a=0$ are concurrent , then the point (a,b)
lies on a.
A. circle
B. straight line
C. parabola
D. hyperbola

Answer: B

- Watch Video Solution

21. If the line $y-2=0$ is the directrix of the parabola
$x^{2}-k y+32=0, k \neq 0$ and the parabola intersects
the circle $x^{2}+y^{2}=8$ at two real distinct points, then the absolute value of k is .

D Watch Video Solution

22. If z_{1}, z_{2}, z_{3} are complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$, Then find
the value of $\left|z_{1}+z_{2}+z_{3}\right|$ is:

D Watch Video Solution

23. If the $4^{\text {th }}$ term of $\left\{\sqrt{x^{\frac{1}{1+\log _{10} x}}}+\sqrt[12]{x}\right\}^{6}$ is equal to

200, $x>1$ and the logarithm is common logarithm, then x is not divisible by

D Watch Video Solution

24. If $\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}=a \sqrt{x}+b(\sqrt[3]{x})+c(\sqrt[6]{x})+d \ln$
being an arbitary constant then the value of
$20 a+b+c+d$ is
25.

Given
$f(x)= \begin{cases}x^{2} \times e^{2(x-1)} & 0 \leq x \leq 1 \\ a & \operatorname{sgn}(x+1) \cos (2 x-2)+b x^{2} \\ 1<x \leq 2\end{cases}$ is differentiable at $x=1$, then the value of $|a-b|$ is

