©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 100

Mathematics

1. The value of x for which for fourth term in the
expansion of $\left(5^{\left(\frac{2}{5}\right) \log _{5} \sqrt{4^{x}+44}}+\frac{1}{5^{\log _{5} \sqrt[3]{2^{x-1}+7}}}\right)^{8}$ is
336 can be equal to
A. $\frac{1}{2}$
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

2.

Let
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan \left(\frac{x}{k}\right)}=L_{1}$ and $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=L_{2}$,
and the value of $L_{1} L_{2}$ is 8 , then k is
A. 4
B. 8
C. 6
D. 2

Answer: D

- Watch Video Solution

3. The area (in sq. units) bounded between
$y=6 \sin x$ and $y+8 \sin ^{3} x=0$
$x=0$ to $x=\pi$ is
A. 10π
B. $\frac{34 \pi}{3}$
C. 8
D. $\frac{68}{3}$

Answer: D

- Watch Video Solution

4. If $\tan 25^{\circ}=a$, then the value of $\tan 205^{\circ}-\tan 115^{\circ}$
$\tan 245^{\circ}+\tan 335^{\circ}$ in terms of a is

$$
\text { A. } \frac{1-a^{2}}{1+a^{2}}
$$

B. $\frac{1-a}{2 a}$
C. $\frac{2 a}{1+a^{2}}$
D. $\frac{1+a^{2}}{1-a^{2}}$

Answer: D

- Watch Video Solution

5. The equation of the line which intersect each of the two lines $2 x+y-1=0=x-2 y+3 z$ and $3 x-y+z+2=0=4 x+5 y-2 z-3=0 \quad$ and is parallel to $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is
A. $4 x+7 y-6 z-1=0=2 x-7 y+4 z+3$
B. $4 x+7 y-6 z-4=0=2 x-7 y+4 z+2$
C. $4 x+7 y-6 z-3=0=2 x-7 y+4 z+7$
D. $4 x+7 y-6 z+7=0=2 x-7 y+4 z-3$

Answer: C

D Watch Video Solution

6. The locus of mid - points of all chords of parabola $y^{2}=4 x$, for which all cirlces drawn taking them as diameters passes through the vertex of the parabola is a conic whose length of the smallest focal chord is equal to
A. 1 units
B. 2 units
C. 3 units
D. 4 units

Answer: B

- Watch Video Solution

7. An exam consists of 3 problems selected randomly
from a collection of 10 problems. For a student to pass, he needs to solve correctly at least two of three problems. If the student knows to solve exactly

5 problems, then the probability that the students
pass the exam is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{3}{4} \\
& \text { D. } \frac{5}{6}
\end{aligned}
$$

Answer: A
8. If the matrix $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$, then the value of $\frac{\left|A^{100}+A^{98}\right|}{\left|A^{20}+A^{18}\right|}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

9. Let $f(x)=\frac{x\left(3^{x}-1\right)}{1-\cos x}$ for $x \neq 0$. Then value of $f(0)$, which make $\mathrm{f}(\mathrm{x})$ continuous at $\mathrm{x}=0$, is
A. $\log 3$
B. $\frac{1}{2} \log 3$
C. $\frac{1}{2 \log 3}$
D. $2 \log 3$

Answer: D

- Watch Video Solution

10. The total number of divisors of the number
$N=2^{5} \cdot 3^{4} \cdot 5^{10} \cdot 7^{6}$ that are of the form
$4 K+2, \forall K \in N$ is equal to
A. 385
B. 384
C. 96
D. 77

Answer: B
11. The value of $\sin ^{-1} \sin 17+\cos ^{-1} \cos 10$ is equal to
A. 27
B. -27
C. $17-5 \pi$
D. $9 \pi-27$

Answer: D

- Watch Video Solution

12. For any two sets A and B, the values of $[(A-B) \cup B]^{C}$ is equal to
A. $A^{C} \cap B^{C}$
B. $A \cup B$
C. $A-B$
D. $B-A$

Answer: A

- Watch Video Solution

13. Tangents are drawn to a unit circle with centre at
the origin from each point on the line $2 x+y=4$.
Then the equation to the locus of the middle point of the chord of contact is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{4} \\
& \text { B. } \frac{\pi}{16} \\
& \text { C. } \frac{\pi}{8} \\
& \text { D. } \frac{\sqrt{2} \pi}{8}
\end{aligned}
$$

Answer: C
14. A straight line L cuts the sides $A B, A C, A D$ of a parallelogram ABCD at B_{1}, C_{1}, d_{1} respectively. If $\overrightarrow{A B_{1}}=\lambda_{1} \overrightarrow{A B}, \overrightarrow{A D_{1}}=\lambda_{2} \overrightarrow{A D}$ and $\overrightarrow{A C_{1}}=\lambda_{3} \overrightarrow{A C}$,
then $\frac{1}{\lambda_{3}}$ equal to

$$
\begin{aligned}
& \text { A. } \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \\
& \text { B. } \frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}} \\
& \text { C. }-\lambda_{1}+\lambda_{2}
\end{aligned}
$$

D. $\lambda_{1}+\lambda_{2}$

Answer: A
15. If eccentricity of the ellipse
$\frac{x^{2}}{a^{2}+1}+\frac{y^{2}}{a^{2}+2}=1$ is $\frac{1}{\sqrt{6}}$, then the ratio of the
length of the latus rectum to the length of the major axis is

$$
\text { A. } \frac{5}{6}
$$

B. $\frac{3}{\sqrt{6}}$
C. $\frac{2}{3}$
D. $\frac{2}{\sqrt{6}}$

Answer: A
16.
A. $c=a b$
B. $b=a c$
C. the imaginary root is equal to $\pm i c$
D. the imaginary root is equal to $\pm i a$

Answer: A

17. If the integral $I_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n-1) x}{\sin x} d x$.. Then the value of $\left[I_{20}\right]^{3}-\left[I_{19}\right]^{3}$ is
A. 400
B. 200
C. 361
D. 0

Answer: D
18. In an arithmetic progression the $(p+1)^{\text {th }}$ term is twice the $(q+1)^{\text {th }}$ term. If its $(3 p+1)^{\text {th }}$ term is λ times the $(p+q+1)^{\text {th }}$ term, then λ is equal to
A. 2
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$

Answer: A
19. If $f(x)$ is a differentiable function satisfying
$\left|f^{\prime}(x)\right| \leq 4 \forall x \in[0,4]$ and $f(0)=0$, then
A. $f(x)=18$ has no solution in $x \in[0,4]$
B. $f(x)=18$ has nore than 2 solutions in

$$
x \in[0,4]
$$

C. $f(x)=14$ has no solution in $x \in[0,4]$
D. $f(x)=20$ has 2 solution in $x \in[0,4]$

Answer: A

- Watch Video Solution

20. The equation of the curve satisfying the differential equation $\frac{d y}{d x}+2 \frac{y}{x^{2}}=\frac{2}{x^{2}}$ and passing through $\left(\frac{1}{2}, e^{4}+1\right)$ is

$$
\begin{aligned}
& \text { A. } y=e^{2 x}+1 \\
& \text { B. } y=e^{\frac{2}{x}}-1 \\
& \text { C. } y=1+e^{\frac{2}{x}} \\
& \text { D. } y=1+e^{-x}
\end{aligned}
$$

Answer: C

21. The product of a 9×4 matrix and a 4×9 matrix contains a variable x in exactly two places. If $D(x)$ is the determinant of the matrix product such that $D(0)=1, D(-1)=1$ and $D(2)=7, \quad$ then $D(-2)$ is equal to

- Watch Video Solution

22. If the mean of 50 observation is 25 and their standard deviation is 4 and the sum of the squares
of all the observations is λ, then $\frac{\lambda}{1000}$ is
23. If the point $M(h, k)$ lie on the line $2 x+3 y=5$ such that $|M A-M B|$ is maximum where $(1,2)$ and $\mathrm{B}(2,3)$, then the value of $(h+k)$ is

- Watch Video Solution

24. The indefinite integral
$I=\int \frac{\sec ^{2} x \tan x(\sec x+\tan x) d x}{\left(\sec ^{5} x+\sec ^{2} x \tan ^{3} x-\sec ^{3} x \tan ^{2} x-\tan ^{5} x\right)}$
simplifies
to
where
$f\left(\frac{\pi}{4}\right)=2 \sqrt{2}+1 \quad$ and $\quad c$ is the constant of integration. If the value of $f\left(\frac{\pi}{3}\right)$ is $a+\sqrt{b}$, then the value of $b-3 a$ is equal to
25. The total number of solutions of the equation $\sin x \tan 4 x=\cos x$ for all $x \in(0, \pi)$ are
