©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 102

Mathematics

1. In the expansion of $(a+b)^{n}$, first three terms are 243,810 and 1080
respectively, then the fourth term of the expansion is $(n \in N)$
A. 32
B. 720
C. 510
D. 420

- Watch Video Solution

2. If $z=x+i y, \forall x, y \in R, i^{2}=-1, x y \neq 0$ and $|z|=2$, then the imaginary part of $\frac{z+2}{z-2}$ cannot be
A. 1
B. 3
C. 2
D. 4

Answer: A

- Watch Video Solution

3. The number of permutations of the alphabets of the word "GOOGLE" in which O's are together but G's are separated, is
A. 24
B. 48
C. 72
D. 36

Answer: D

- Watch Video Solution

4. If B, C are square matrices of same order such that $C^{2}=B C-C B$ and $B^{2}=-I$, where I is an identity matrix, then the inverse of matrix $(C-B)$ is
A. C
B. $C+B$
C. $C-B$
D. I

- Watch Video Solution

5. The tangent drawn to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, at point P in the first quadrant whose abscissa is 5 , meets the lines $3 x-4 y=0$ and $3 x+4 y=0$ at Q and R respectively. If O is the origin, then the area of triangle $O Q R$ is (in square units)
A. 6
B. 12
C. 3
D. 24

Answer: B

D Watch Video Solution

6. Two natrual numbers are randomly chosen and multiplied, then the chance that their product is divisible by 3 is
A. $\frac{4}{9}$
B. $\frac{5}{9}$
C. $\frac{2}{3}$
D. $\frac{1}{9}$

Answer: B

- Watch Video Solution

7. If α and β are the roots of the equation $x^{2}+x+c=0$ such that $\alpha+\beta, \alpha^{2}+\beta^{2}$ and $\alpha^{3}+\beta^{3}$ are in arithmetic progression, then c is equal to
A. 1
B. $\frac{4}{3}$
C. $\frac{4}{5}$
D. $\frac{4}{7}$

Answer: D

- Watch Video Solution

8. In a harmonic progression $t_{1}, t_{2}, t_{3}, \ldots \ldots \ldots \ldots \ldots$, it is given that $t_{5}=20$ and $t_{6}=50$. If S_{n} denotes the sum of first n terms of this, then the value of n for which S_{n} is maximum is
A. 6
B. 7
C. 9
D. 10

Answer: A

9. The locus of the centre of the circle which makes equal intercepts on the lines $x+y=1$ and $x+y=5$ is
A. $x-y=2$
B. $x+y=6$
C. $x+y=3$
D. $x-y=0$

Answer: C

- Watch Video Solution

10.

Consider the
system
of
equations
$\alpha x+y+z=p, x+\alpha y+z=q$ and $x+y+\alpha z=r$, then the sum of all possible distinct value(s) of α for which system does not possess a unique solution is
A. -2
B. 1
C. -1
D. 0

Answer: C

- Watch Video Solution

11. The normal to the parabola $y^{2}=4 x$ at $P(9,6)$ meets the parabola again at Q. If the tangent at Q meets the directrix at R, then the slope of another tangent drawn from point R to this parabola is
A. 11
B. $\frac{11}{3}$
C. $\frac{3}{11}$
D. 3

D Watch Video Solution

12. The number of points where $f(x)=\left|x^{2}-3\right| x|-4|$ is non differentiable is
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

13. The complete set of values of α for which the lines

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { and } \frac{x-3}{2}=\frac{y-5}{\alpha}=\frac{z-7}{\alpha+2}
$$

concurrent and coplanar is

A. $\{2,3\}$
B. $\{0,3\}$
C. $[-2,3]$
D. R

Answer: D

- Watch Video Solution

14. Let $f(x)=2 x+1$ and $g(x)=\int \frac{f(x)}{x^{2}(x+1)^{2}} d x$. If $6 g(2)+1=0$ then $g\left(-\frac{1}{2}\right)$ is equal to
A. 4
B. -4
C. 3
D. 2

Answer: A

- Watch Video Solution

15. Let $f(x)$ be a cubic function such that $f^{\prime}(1)=f^{\prime \prime}(2)=0$. If $x=1$ is a point of local maxima of $f(x)$, then the local minimum value of $f(x)$ occurs at
A. $x=0$
B. $x=2$
C. $x=4$
D. $x=3$

Answer: D

- Watch Video Solution

16. The maximum value of p for which the lines $3 x-4 y=2,3 x-4 y=12,12 x+5 y=7 \quad$ and $\quad 12 x+5 y=p$ constitute the sides of a rhombous is
A. 33
B. 19
C. -19
D. 9

Answer: A

- Watch Video Solution

17. The function $f: R \rightarrow R$ defined as $f(x)=\frac{x^{2}-x+1}{x^{2}+x+1}$ is
A. injective as well as sujective
B. injective but not surjective
C. surjective but not injective
D. neither injective nor surjective

Answer: D

- Watch Video Solution

18. The value of $\lim _{x \rightarrow 0^{+}}\left\{x^{x^{2}}+x^{\left(x^{x}\right)}\right\}$ is equal to
A. 0
B. 1
C. 2
D. $\frac{1}{2}$

Answer: B
19. The area (in sq. units) bounded by $y=\ln x, y=\frac{x}{e}$ and y - axis is equal to
A. $\frac{e}{2}-1$
B. $\frac{e}{2}$
C. $\frac{5 e}{2}$
D. $\frac{3 e}{2}-1$

Answer: B

- Watch Video Solution

20.

Consider
three
vectors
$\vec{p}=\hat{i}+\hat{j}+\hat{k}, \vec{q}=3 \hat{i}-\hat{j}+\hat{k}$ and $\vec{r}=\alpha \hat{i}+\beta \hat{j}+\lambda \hat{k}, \forall \alpha, \beta, \lambda \in R$
. If $\left[\begin{array}{lll}\vec{p} & \vec{q} & \vec{r}\end{array}\right]$ is maximum and $[\vec{r}]=2 \sqrt{6}$, then the value of $\alpha-\beta-\lambda$ is equal to
A. 8
B. 4
C. 0
D. -4

Answer: B

- Watch Video Solution

21.

If $\quad \sin \theta+\sin ^{2} \theta=1$,
then
prove
that $\cos ^{12} \theta+3 \cos ^{10} \theta+3 \cos ^{8} \theta+\cos ^{6} \theta-1=0$

- Watch Video Solution

22. If $y=f(x)$ satisfies the differential equation $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{3 x^{2}}{1+x^{2}}$ where $f(1)=1$, then $f(2)$ is equal to

D Watch Video Solution

23. If the variance of the first 50 odd natural numbers is V_{1} and the variance of next 50 odd natural numbers is V_{2}, then $V_{1}+V_{2}$ is equal to

- Watch Video Solution

24.

$I_{1}=\int_{0}^{\frac{\pi}{2}} e^{\sin x}(1+x \cos x) d x$ and $I_{2}=\int_{0}^{\frac{\pi}{2}} e^{\cos x}(1-x \sin x) d x$,
then $\left[\frac{I_{1}}{I_{2}}\right]$ is equal to (where $[x]$ denotes the greatest integer less than or equal to x)

- Watch Video Solution

25. The number of solution of $\cos ^{2} x+\cos ^{2} 2 x=2$ in $[0,20]$ is equal to

- Watch Video Solution

