

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 104

Mathematics

1. If 4x - ay + 3z = 0, x + 2y + ax = 0

and ax+2z=0 have a non - trivial solution, then the number of

real value(s) of a is

A. 0

B. 1

C. 2

Answer: B

2. Triangle ABC is right angled at A. The circle with centre A and radius AB cuts BC and AC internally at D and E respectively. If BD=20 and DC=16 then the length AC equals

- A. $6\sqrt{21}$ units
- B. $6\sqrt{26}$ units
- C.30 units
- D.32 units

Answer: B

3. Consider the quadratic polynomial $f(x) = \frac{x^2}{4} - ax + a^2 + a - 2$ then (i) If the origin lies between zero's of polynomial, then number of integral value(s) of 'a' is (ii) if a varies , then locus of the vertex is :

A. 1

B. 2

C. 3

D. more than 3

Answer: B

4. Sum of an infinite G.P. is $\frac{5}{4}$ times the sum of all the odd terms.

The common ratio of the G.P. is

A. $\frac{1}{4}$ B. 4 C. $\frac{1}{3}$

Answer: A

D. 6

• Watch Video Solution
5. The value of x satisfying the equation

$$|\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3}$$

A belongs to $\left[0, \frac{\pi}{3}\right]$

B. belongs to
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

C. belongs to $\left[\frac{3\pi}{4}, \pi\right)$

D. does not exist

Answer: D

Watch Video Solution

6. if
$$f(x) = e^{-rac{1}{x^2}}, x
eq 0$$
 and $f(0) = 0$ then $f'(0)$ is

A. not defined

B. 1

C. 0

D. 2

Answer: C


```
7. The value of \lim_{x 	o 0^+} \; ((x \cot x) + (x \ln x)) is equal to
```

A. 1

B. 2

C. 3

D. 0

Answer: A

Watch Video Solution

8. Which of the following is true?

(i) If p is a statement then $\ \ p$ is not a statement

(ii) If p is a statement then $\ \ p$ is also a statement

(iii) Negation of ''p:x is a positive real number" is , "x is a negative real number"

A. Only (ii)

B. Only (i)

C. (i) and (iii)

D. None of these

Answer: A

9. Two poles of height a and b stand at the centers of two circular plots which touch each other externally at a point and the two poles subtend angles of 30° and 60° respectively at this point, then distance between the centers of these plots is

A. a + b

B.
$$rac{(3a+b)}{\sqrt{3}}$$

C. $rac{(a+3b)}{\sqrt{3}}$
D. $a\sqrt{3}+b$

Answer: B

10. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + 4\hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + 2\hat{k}$.
If \overrightarrow{S} be a unit vector, then the magnitude of the vector
 $\left(\overrightarrow{a}, \overrightarrow{S}\right)\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{b}, \overrightarrow{S}\right)\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{c}, \overrightarrow{S}\right)\left(\overrightarrow{a} \times \overrightarrow{b}\right)$

is equal to

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

11. Two numbers a and b are chosen simultaneously from the set of integers 1, 2, 3,, 39, then the probability that the equation 7a - 9b = 0 is satisfied is

A.
$$\frac{1}{247}$$

B. $\frac{2}{247}$
C. $\frac{4}{741}$
D. $\frac{5}{741}$

Answer: C

12. Let the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ and BA = A where B

represent 3 imes 3 order matrix. If the total number of 1 in matrix A^{-1} and matrix B are p and q respectively. Then the value of p+q is equal to

- A. 3
- B. 4
- C. 5
- D. 7

Answer: D

13. Find the term independent of x in the expansion of $\left(1+x+2x^3
ight)\left[\left(3x^2/2
ight)-(1/3)
ight]^9$

A.
$$\frac{13}{63}$$

B. $\frac{19}{45}$
C. $\frac{17}{54}$
D. $\frac{23}{36}$

Answer: C

14. The maximum negative integral value of b for which the point

 $ig(2b+3,b^2ig)$ lies above the line

 $3x-4y-a(a-2)=0,\,orall a\in R$ is

$$A. -1$$

B.-3

 $\mathsf{C}.-2$

 $\mathsf{D.}-4$

Answer: C

> Watch Video Solution

15. The number of ways in which 2n distinct letters (addressed) can be distributed in N distinct mail boxes such that there are exactly K letters $(n < K \leq 2n)$ in one of the mail boxes is

A.
$${}^{2n}C_K$$

B. ${}^{2n}C_K$. $N(N-1)^{2n-K}$
C. ${}^{2n}C_K$. $(N-1)^{2n-K}$
D. ${}^{2n}C_K(2n-K)^{N-1.N}$

Answer: B

Watch Video Solution

16. From a variable point P on the tagent at the vertex of the parabola $y^2 = 2x$, a line is drawn perpendicular to the chord of contact. These variable lines always pass through a fixed point, whose x - coordinate is

A.
$$\frac{1}{2}$$

B. 1
C. $\frac{3}{2}$

D. 2

Answer: B

17. If the complex number $\omega=x+iyig(\,orall x,y\in R\, ext{ and }i^2=\,-1ig)$ satisfy the equation $\omega^3=8i,$ then the maximum vlaue of y is

A. 1

B.
$$\frac{\sqrt{3}}{2}$$

C. $\frac{1}{2}$

D. 2

Answer: A

18. If f(x) is a twice differentiable function such that f(0) = f(1) = f(2) = 0. Then

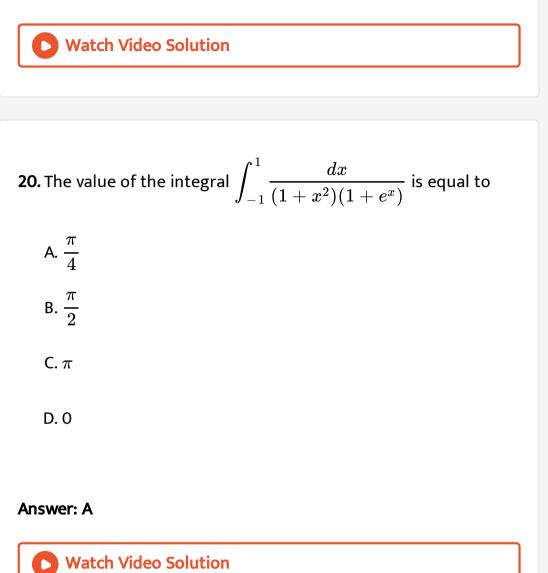
A. F(x) = 0 has exactly 3 roots

B. f'(x) = for at least 3 real values of x

C. f''(x) = 0 for atleast 2 real value of x

D. f''(x) = 0 for atleast 1 real value of x

Answer: D


C. $\frac{5}{4}$

D. $\frac{3}{4}$

19. Let y = f(x) be a solution of the differential equation $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ ($\forall x, y > 0$). If f(1) = 2, then f'(1) is equal to A. 2 B. $\frac{5}{2}$

Answer: D

21. If the variance of the data 12, 14, 18, 19, 21, 36 is λ , then the

value of 3λ is equal to

Watch Video Solution

22. If the plane
$$ax - by + cz = d$$
 contains the line $\frac{x-a}{a} = \frac{y-2d}{b} = \frac{z-c}{c}$, then the value of $\frac{b}{4d}$ is equal to $(b, d \neq 0)$

Watch Video Solution

23. The vertices of the triangle ABC are A(0, 0), B(3, 0) and C(3, 4), where A and C are foci of an ellipse and B lies on the ellipse. If the length of the latus rectum of the ellipse is $\frac{12}{p}$ units, then the value of p is

Watch Video Solution

24. If $\cos 2x + 2\cos x = 1$, then $\left(\sin^2 x\right) \left(2 - \cos^2 x
ight)$ is equal to

Watch Video Solution

25. Consider
$$\int \frac{3x^4+2x^2+1}{\sqrt{x^4+x^2+1}}dx=f(x).$$
 If $f(1)=\sqrt{3},$ then $\left(f(2)
ight)^2$ is equal to

