đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 104

Mathematics

1. If $4 x-a y+3 z=0, x+2 y+a x=0$
and $a x+2 z=0$ have a non - trivial solution, then the number of
real value(s) of a is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

2. Triangle $A B C$ is right angled at A. The circle with centre A and radius $A B$ cuts $B C$ and $A C$ internally at D and E respectively. If $B D=20$ and $D C=16$ then the length $A C$ equals
A. $6 \sqrt{21}$ units
B. $6 \sqrt{26}$ units
C. 30 units
D. 32 units

Answer: B

3. Consider the quadratic polynomial $f(x)=\frac{x^{2}}{4}-a x+a^{2}+a-2$ then (i) If the origin lies between zero's of polynomial, then number of integral value(s) of 'a' is (ii) if a varies, then locus of the vertex is:
A. 1
B. 2
C. 3
D. more than 3

Answer: B

4. Sum of an infinite G.P. is $\frac{5}{4}$ times the sum of all the odd terms. The common ratio of the G.P. is
A. $\frac{1}{4}$
B. 4
C. $\frac{1}{3}$
D. 6

Answer: A

- Watch Video Solution

5. The value of x satisfying the equation
$|\sin x \cos x|+\sqrt{2+\tan ^{2} x+\cot ^{2} x}=\sqrt{3}$
A. belongs to $\left[0, \frac{\pi}{3}\right]$
B. belongs to $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
C. belongs to $\left[\frac{3 \pi}{4}, \pi\right)$
D. does not exist

Answer: D

- Watch Video Solution

6. if $f(x)=e^{-\frac{1}{x^{2}}}, x \neq 0$ and $f(0)=0$ then $f^{\prime}(0)$ is
A. not defined
B. 1
C. 0
D. 2

Answer: C

7. The value of $\lim _{x \rightarrow 0^{+}}((x \cot x)+(x \ln x))$ is equal to
A. 1
B. 2
C. 3
D. 0

Answer: A

- Watch Video Solution

8. Which of the following is true?
(i) If p is a statement then $\sim p$ is not a statement
(ii) If p is a statement then $\sim p$ is also a statement
(iii) Negation of '' $p: x$ is a positive real number" is, " x is a negative real number"
A. Only (ii)
B. Only (i)
C. (i) and (iii)
D. None of these

Answer: A

- Watch Video Solution

9. Two poles of height a and b stand at the centers of two circular plots which touch each other externally at a point and the two poles subtend angles of 30° and 60° respectively at this point, then distance between the centers of these plots is
A. $a+b$
B. $\frac{(3 a+b)}{\sqrt{3}}$
C. $\frac{(a+3 b)}{\sqrt{3}}$
D. $a \sqrt{3}+b$

Answer: B

- Watch Video Solution

10. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+4 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+2 \hat{k}$. If \vec{S} be a unit vector, then the magnitude of the vector $(\vec{a} \cdot \vec{S})(\vec{b} \times \vec{c})+(\vec{b} \cdot \vec{S})(\vec{c} \times \vec{a})+(\vec{c} \cdot \vec{S})(\vec{a} \times \vec{b})$
is equal to
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

11. Two numbers a and b are chosen simultaneously from the set of integers $1,2,3, \ldots . ., 39$, then the probability that the equation $7 a-9 b=0$ is satisfied is
A. $\frac{1}{247}$
B. $\frac{2}{247}$
C. $\frac{4}{741}$
D. $\frac{5}{741}$

Answer: C

- Watch Video Solution

12. Let the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ and $B A=A$ where B represent 3×3 order matrix. If the total number of 1 in matrix A^{-1} and matrix B are p and q respectively. Then the value of $p+q$ is equal to
A. 3
B. 4
C. 5
D. 7

Answer: D

- Watch Video Solution

13. Find the term independent of x in the expansion of $\left(1+x+2 x^{3}\right)\left[\left(3 x^{2} / 2\right)-(1 / 3)\right]^{9}$
A. $\frac{13}{63}$
B. $\frac{19}{45}$
C. $\frac{17}{54}$
D. $\frac{23}{36}$

Answer: C

- Watch Video Solution

14. The maximum negative integral value of b for which the point
$\left(2 b+3, b^{2}\right)$ lies above the line
$3 x-4 y-a(a-2)=0, \forall a \in R$ is
A. -1
B. -3
C. -2
D. -4

Answer: C

- Watch Video Solution

15. The numberof ways in which 2 n distinct letters (addressed) can be distributed in N distinct mail boxes such that there are exactly

K letters $(n<K \leq 2 n)$ in one of the mail boxes is
A. ${ }^{2 n} C_{K}$
B. ${ }^{2 n} C_{K} \cdot N(N-1)^{2 n-K}$
C. ${ }^{2 n} C_{K} \cdot(N-1)^{2 n-K}$
D. ${ }^{2 n} C_{K}(2 n-K){ }^{N-1 . N}$

- Watch Video Solution

16. From a variable point P on the tagent at the vertex of the parabola $y^{2}=2 x$, a line is drawn perpendicular to the chord of contact. These variable lines always pass through a fixed point, whose x -coordinate is
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. 2

Answer: B

A. 1
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. 2

Answer: A

- Watch Video Solution

18. If $f(x)$ is a twice differentiable function such that
$f(0)=f(1)=f(2)=0$. Then
A. $F(x)=0$ has exactly 3 roots
B. $f^{\prime}(x)=$ for atleast 3 real values of x
C. $f^{\prime \prime}(x)=0$ for atleast 2 real value of x
D. $f^{\prime \prime}(x)=0$ for atleast 1 real value of x

Answer: D

- Watch Video Solution

19. Let $y=f(x)$ be a solution of the differential equation $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}(\forall x, y>0)$. If $f(1)=2$, then $f^{\prime}(1)$ is equal to
A. 2
B. $\frac{5}{2}$
C. $\frac{5}{4}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

20. The value of the integral $\int_{-1}^{1} \frac{d x}{\left(1+x^{2}\right)\left(1+e^{x}\right)}$ is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: A
21. If the variance of the data $12,14,18,19,21,36$ is λ, then the value of 3λ is equal to

D Watch Video Solution

22. If the plane $a x-b y+c z=d$ contains the line $\frac{x-a}{a}=\frac{y-2 d}{b}=\frac{z-c}{c}$, then the value of $\frac{b}{4 d}$ is equal to $(b, d \neq 0)$

- Watch Video Solution

23. The vertices of the triangle $A B C$ are $A(0,0), B(3,0)$ and $C(3,4)$, where A and C are foci of an ellipse and B lies on the ellipse. If the length of the latus rectum of the ellipse is $\frac{12}{p}$ units, then the vlaue of p is
24. If $\cos 2 x+2 \cos x=1$, then $\left(\sin ^{2} x\right)\left(2-\cos ^{2} x\right)$ is equal to

- Watch Video Solution

25. Consider $\int \frac{3 x^{4}+2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}} d x=f(x)$. If $f(1)=\sqrt{3}$, then $(f(2))^{2}$ is equal to

- Watch Video Solution

