©゙’ doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 107

Mathematics

1. The coefficient of x^{48} in the expansion of $\left(1+x^{4}\right)\left(1+x^{24}\right)\left(1+x^{48}\right)$ is
A. ${ }^{12} C_{6}+3$
B. ${ }^{12} C_{6}$
C. 1
D. ${ }^{12} C_{6}+2$

Answer: C

D Watch Video Solution

2. If $i^{2}-1$ and $\Sigma_{r=1}^{n}(i)^{r} \forall n \in N$, is a non - zero real number, then n can be
A. 100
B. 201
C. 302
D. 403

Answer: D

- Watch Video Solution

3. If $P=\left[\begin{array}{cc}\lambda & 0 \\ 7 & 1\end{array}\right]$ and $Q=\left[\begin{array}{cc}4 & 0 \\ -7 & 1\end{array}\right]$ such that $P^{2}=Q$, then P^{3} is equal to
A. $\left[\begin{array}{cc}-8 & 0 \\ 21 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}10 & 1 \\ 8 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}7 & 0 \\ 8 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}6 & 0 \\ 4 & 1\end{array}\right]$

Answer: A
4. The system of equations
$x+p y=0, y+p z=0$ and $z+p x=0$ has infinitely
many solutions for
A. $p=1$
B. $p=0$
C. $p=-1$
D. no real value of p

Answer: C

D Watch Video Solution
5. The value of the integral
$\int_{0}^{1}\left\{4 t^{3}(1+t)^{8}+8 t^{4}(1+t)^{7}\right\} d t$ is
A. 128
B. 512
C. 256
D. 1024

Answer: C

- Watch Video Solution

6. The focal chords of the parabola $y^{2}=16 x$ which are tangent to the circle of radius r and centre $(6,0)$ are
perpendicular, then the radius r of the circle is
A. units
B. $\sqrt{2}$ units
C. 1 units
D. $\frac{1}{2}$ units

Answer: B

D Watch Video Solution

7. The equation of the circumcricle of the $x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$ is
A. $x^{2}+y^{2}-4 x-7 y+57=0$
B. $x^{2}+y^{2}-8 x-14 y+57=0$
C. $x^{2}+y^{2}-8 x-|14 y+5|=0$
D. $2 x^{2}+y^{2}-8 x-14 y+57=0$

Answer: B

D Watch Video Solution

8. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three events and $\bar{A}, \bar{B}, \bar{C}$ be their corresponding complementary event. If the probabilities of events $B, A \cap B \cap \bar{C}$ and $\bar{A} \cap B \cap \bar{C} \quad$ are $\frac{5}{6}, \frac{1}{2}$ and $\frac{1}{4}$ respectively, then the probability of the event $B \cap C$ is
A. $\frac{1}{12}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer: A

D Watch Video Solution

9. The area (in sq. units) of the region in the first quadrant bounded by $y=x^{2}, y=2 x+3$ and the y -axis is
A. $2 \sqrt{3}$
B. 6
C. 9
D. $\frac{44}{3}$

Answer: C

- Watch Video Solution

10. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-q}{p}$ lies completely in the plane $2 x-4 y+z=7$, then the ordered pair (p, q) is
A. $(2,7)$
B. $(7,2)$
C. $(2,4)$
D. $(1,1)$

- Watch Video Solution

11. Which of the following statement is converse of the statement "if if rains then we will party"?
A. We will party or it rains
B. It rains or we will party
C. We will not party or it rains
D. We will not party or it does not rain

Answer: C

- Watch Video Solution

12. Let $\mathrm{y}(\mathrm{x})$ is the solution of the differential equation $(x+2) \frac{d y}{d x}-(x+1) y=2$. If $y(0)=-1$, then the value of $y(2)$ is equal to
A. $e^{2}+\frac{1}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}-e^{2}$
D. e^{2}

Answer: B

- Watch Video Solution

13. For a differentiable function $f(x)$, if
$f^{\prime}(2)=2$ and $f^{\prime}(3)=1$, then the value of
$\lim _{x \rightarrow 0} \frac{f\left(x^{2}+x+2\right)-f(2)}{f\left(x^{2}-x+3\right)-f(3)}$ is equal to
A. 2
B. 1
C. -2
D. -1

Answer: C
14. For $p>2$ and $x \in R$, if the number of natural numbers in the range of $f(x)=\frac{x^{2}+2 x+p}{x^{2}+2 x+2}$ is 3 , then the value of p is equal to
A. 3
B. 4
C. 5
D. 6

Answer: C
15. Let $\quad \overrightarrow{V_{1}}=\hat{i}+a \hat{j}+\hat{k}, \overrightarrow{V_{2}}=\hat{j}+a \hat{k} \quad$ and $\overrightarrow{V_{3}}=a \hat{i}+\hat{k}, \forall a>0$. If $\left[\begin{array}{lll}\overrightarrow{V_{1}} & \overrightarrow{V_{2}} & \overrightarrow{V_{3}}\end{array}\right]$ is minimum, then the value of a is
A. $\sqrt{3}$
B. 3
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: D

16. The orthocentre of the triangle whose vertices are
$(1,1),(5,1)$ and $(4,5)$ is
A. $\left(\frac{9}{4},-\frac{1}{3}\right)$
B. $(4,13)$
C. $\left(4, \frac{9}{4}\right)$
D. $\left(4, \frac{7}{4}\right)$

Answer: D

- Watch Video Solution

17.

Let

$$
a \in\left(0, \frac{\pi}{2}\right)
$$

$f(x)=\sqrt{x^{2}+x}+\frac{\tan ^{2} \alpha}{\sqrt{x^{2}+x}}, x>0$. If the least value of
$f(x)$ is $2 \sqrt{3}$, then α is equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{8}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer: A

D Watch Video Solution

18. A normal is drawn to the ellipse $\frac{x^{2}}{9}+y^{2}=1$ at the point $(3 \cos \theta, \sin \theta)$ where $0<\theta<\frac{\pi}{2}$. If N is the foot of the perpendicular from the origin O to the normal such that $\mathrm{ON}=2$, then θ is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: D

D Watch Video Solution

19. The natural domain of the function

$$
f(x)=\sqrt{\sin ^{-1}(2 x)+\frac{\pi}{3}} \text { is }
$$

A. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
B. $\left[-\frac{\sqrt{3}}{4}, \frac{1}{2}\right]$
C. $\left[\frac{13}{4}, \frac{1}{2}\right]$
D. $\left[-\frac{\sqrt{3}}{2}, 1\right]$

Answer: B

- Watch Video Solution

20. In the interval $[0,2]$, on which of the following function

Lagrange's mean value theorem is not applicable ?
A. $f(x)= \begin{cases}\frac{\sin x}{x} & x \neq 0 \\ 1 & x=0\end{cases}$
B. $f(x)= \begin{cases}1-x & x<1 \\ (1-x)^{2} & x \geq 1\end{cases}$
C. $f(x)=x^{2}|x|$
D. $f(x)=\left|e^{x}-1\right|$

Answer: B

- Watch Video Solution

21. The number of ways three different natural numbers cab be drawn from the set $\{1,2,3,4, \ldots \ldots \ldots, 10\}$, if minimum of the chosen numbers is smaller than 4 , is

- Watch Video Solution

22.

$f(x)=x^{2}+2 p x+2 q^{2}$ and $g(x)=-x^{2}-2 p x+p^{2}$
(where $q \neq 0$). If $x \in R$ and the minimum value of $f(x)$ is
equal to the maximum value of $g(x)$, then the value of $\frac{p^{2}}{q^{2}}$ is equal to

- Watch Video Solution

23.

$\int \frac{d x}{(x+1)^{2}\left(x^{2}+2 x+2\right)}=\frac{A}{x+1}+B \tan ^{-1}(x+1)+C$,
where A and B are constants and C is the constant of integration, then $|A-B|$ is equal to

- Watch Video Solution

24. The number of solutions of the equation $\sin x \cdot \sin 2 x \cdot \sin 3 x \cdot \sin 4 x \cdot \sin 5 x=0$ in $[0, \pi]$ is equal to
25. A balloon is rising vertically upwards. An an instant, an observation on the ground, whose distance from the balloon is 100 meters, sees the balloon at an angle of elevation of 30°. If the balloon rises further vertically to a point where the angle of elevation as seen by the observer is 45°, then its height (in meters) from the ground is
(Take $\sqrt{3}=1.73$)

- Watch Video Solution

