# ©゙" doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - NTA MOCK TESTS

## NTA JEE MOCK TEST 108

Mathematics

1. For $f(x)=x^{3}+b x^{2}+c x+d$, if $b^{2}>4 c>0$ and
$b, c, d \in R$, then $\mathrm{f}(\mathrm{x})$
A. is strictly increasing
B. is strictly decreasing
C. has a local maxima
D. is bounded

## Answer: C

## D Watch Video Solution

2. Let $f(x)$ be a differentiable function such that $\int_{t}^{t^{2}} x f(x) d x=\frac{4}{3} t^{3}-\frac{4 t}{3} \forall t \geq 0$, then $\mathrm{f}(1)$ is equal to
A. 4
B. $\frac{4}{3}$
C. 3
D. $\frac{8}{3}$

Answer: D
3. If the area bounded by $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{64}{3}$ square units, then the positive value of $a$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

4. If $\left(\frac{2+\cos x}{3+y}\right) \frac{d y}{d x}+\sin x=0$ and $y(0)=1$, then $y\left(\frac{\pi}{3}\right)$ is equal to
A. $\frac{4}{3}$
B. $\frac{7}{3}$
C. $\frac{1}{3}$
D. 1

## Answer: C

## ( Watch Video Solution

5. The area (in square units) of the triangle bounded by $x=4$ and the lines $y^{2}-x^{2}+2 x=1$ is equal to
A. 3
B. 6
C. 12
D. 9

## Answer: D

## ( Watch Video Solution

6. The angle between the tangents drawn from the point (2,
6) to the parabola $y^{2}-4 y-4 x+8=0$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

## Answer: C

## D Watch Video Solution

7. If $f(x)=\cos x+\sin x$ and $g(x)=x^{2}-1$, then $g(f(x))$
is injective in the interval
A. $\left[0, \frac{\pi}{2}\right]$
B. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. $[0, \pi]$

Answer: B
8. The value of $\lim _{x \rightarrow 0} \frac{(1+6 x)^{\frac{1}{3}}-(1+4 x)^{\frac{1}{2}}}{x^{2}}$ is equal to
A. 1
B. 2
C. -1
D. -2

## Answer: D

## D Watch Video Solution

9. If $\int \frac{x}{x+1+e^{x}} d x=p x+q \ln \left|x+1+e^{x}\right|+c$, where c is the constant of integration, then $p+q$ is equal to
A. 0
B. 1
C. 2
D. 3

## Answer: A

## ( Watch Video Solution

10. Let $X_{n}$ denote the mean of first n natural numbers, then the mean of $X_{1}, X_{2}, \ldots \ldots \ldots \ldots . . X_{100}$ is
A. 25
B. 50
C. 25.5
D. 25.75

Answer: D

## D Watch Video Solution

11. Let $f(x)=\frac{\sin x+3 \sin 3 x+5 \sin 5 x+3 \sin 7 x}{\sin 2 x+2 \sin 4 x+3 \sin 6 x}$, wherever defined. If $x_{1}+x_{2}=\frac{\pi}{2}$, where $f(x)$ is defined at $x_{1}$ and $x_{2}$, then $f^{2}\left(x_{1}\right)+f^{2}\left(x_{2}\right)$ is
A. $\cos ^{2} x$
B. $\sin ^{2} x$
C. 4
D. 1

## - Watch Video Solution

12. If two points A and B lie on the curve $y=x^{2}$ such that $\overrightarrow{O A} \cdot \hat{i}=1$ and $\overrightarrow{O B} \cdot \hat{j}=4$, where O is origin and A and B lie in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant respectively, then $\overrightarrow{O A} \cdot \overrightarrow{O B}$ is equal to
A. 0
B. 2
C. 4
D. 5

Answer: B
13. A man alternately tosses a coin and throw a dice, beginning with the coin. The probability that he gets a head in coin before he gets a 5 or 6 in dice, is
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

## D Watch Video Solution

14. A plane $P$ passes through the point $(1,1,1)$ and is parallel to the vectors $\vec{a}=-\hat{i}+\hat{j}$ and $\vec{b}=\hat{i}-\hat{k}$. The
distance of the point $\left(\frac{3 \sqrt{3}}{2}, 3 \sqrt{3}, 3\right)$ from the plane is equal to
A. $\sqrt{3}$ units
B. $\frac{9}{2}$ units
C. $3 \sqrt{3}$ units
D. 3 units

## Answer: B

## - Watch Video Solution

15. Let $A$ and $B$ two non singular matrices of same order such that $(A B)^{k}=B^{k} A^{k}$ for consecutive positive integral values of k, then $A B^{2} A^{-1}$ is equal to
A. $A^{2}$
B. B
C. A
D. $B^{2}$

## Answer: D

## (D) Watch Video Solution

16. The value of $\left.\Sigma_{r=1}^{n}(-1)^{r+1} \frac{{ }^{n} C_{r}}{r+1}\right)$ is equal to
A. $-\frac{1}{n+1}$
B. $-\frac{1}{n}$
C. $\frac{1}{n+1}$
D. $\frac{n}{n+1}$

Answer: D

## D Watch Video Solution

17. If $\alpha$ and $\beta$ are the roots of the equation $x^{2}+\alpha x+\beta=0$ such that $\alpha \neq \beta$, then the number of integral values of $x$ satisfying $||x-\beta|-\alpha|<1$ is
A. 0
B. 1
C. 2
D. more than 2

Answer: C
18. Given $\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2}-4 x+k=0(k \neq 0)$. If $\alpha \beta, \alpha \beta^{2}+\alpha^{2} \beta$ and $\alpha^{3}+\beta^{3}$ are in geometric progression, then the value of $k$ is equal to
A. 4
B. $\frac{16}{7}$
C. $\frac{3}{7}$
D. 12

Answer: B
19. The equation $\cos ^{4} x-\sin ^{4} x+\cos 2 x+\alpha^{2}+\alpha=0$ will have at least one solution, if
A. $-2 \leq \alpha \leq 2$
B. $-3 \leq \alpha \leq 1$
C. $-2 \leq \alpha \leq 1$
D. $-1 \leq \alpha \leq 2$

## Answer: C

## D Watch Video Solution

20. The radius of the circle with centre at $(3,2)$ and whose
$C: x^{2}+y^{2}-4 x-8 y+16=0$ is also a diameter of the circle C, is
A. 3 units
B. 2 units
C. 1 units
D. $\sqrt{3}$ units

Answer: A

## - Watch Video Solution

21. 

$f(x)=[x]\left\{x^{2}\right\}+[x]\left[x^{2}\right]+\{x\}\left[x^{2}\right]+\{x\}\left\{x^{2}\right\}, \forall x \in[0,10]$
[.] and $\{$.$\} the greatest integer and fractional part$
functions respectively). The number of points of discontinuity of $f(x)$ is

## - Watch Video Solution

22. If the line $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=a^{2}$, then $a^{2}$ is equal to

## - Watch Video Solution

23. If

$$
i^{2}=-1
$$

and
$\left(\frac{1+i}{\sqrt{2}}\right)^{n}=\left(\frac{1-i}{\sqrt{2}}\right)^{m}=1, \forall n, m \in N, \quad$ then the minimum value of $n+m$ is equal to
24. If $a, b$ and $c$ are non-zero real numbers and if system of equations
$(a-1) x=y+z,(b-1) y=z+x$ and $(c-1) z=x+y$
have a non - trivial solutin, then $\frac{3}{2 a}+\frac{3}{2 b}+\frac{3}{2 c}$ is equal to

## - Watch Video Solution

25. The number of quadratic polynomials $a x^{2}+2 b x+c$ which satisfy the following conditions is $k$
(i) a, b, c are distinct
(ii) $a, b, c \in\{1,2,3,4, \ldots .2001,2002\}$
(iii) $x+1$ divides $a x+2 b x+c$ Then $\frac{k}{10^{5}}$ is equal to

## D Watch Video Solution

