© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 22

Mathematics

1. Let $I_{1}=\int_{0}^{1} \frac{|\ln x|}{x^{2}+4 x+1} d x$ and $I_{2}=\int_{1}^{\infty} \frac{\ln x}{x^{2}+4 x+1} d x$, then
A. $I_{1}=I_{2}$
B. $I_{1}>I_{2}$
C. $I_{1}+I_{2}=0$
D. $I_{1}=2 I_{2}$
2. The number of positive integral solutions of the equation $\left|\begin{array}{ccc}x^{3}+1 & x^{2} y & x^{2} z \\ x y^{2} & y^{3}+1 & y^{2} z \\ x z^{2} & z^{2} y & z^{3}+1\end{array}\right|=11$ is

- Watch Video Solution

3. The value of the integral $\int \frac{\left(x^{2}-4 x \sqrt{x}+6 x-4 \sqrt{x}+1\right) d x}{x-2 \sqrt{x}+1}$
A. $\frac{x^{\frac{3}{2}}}{2}+x+c$
B. $\frac{x^{2}}{2}-\frac{4}{3} x^{\left(\frac{3}{2}\right)}+x+c$
C. $x^{\frac{3}{2}}+\frac{x}{2}+c$
D. $\frac{2}{3} x^{\frac{3}{2}}+c$

Answer: B

4. If the solution of the differential equation $\frac{d y}{d x}=\frac{x^{3}+x y^{2}}{y^{3}-y x^{2}}$ is $y^{k}-x^{k}=2 x^{2} y^{2}+\lambda$
(where, λ is an arbitrary constant), then the value of k is
A. 2
B. 4
C. 1
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

5. The number of tangents that can be drawn from $(2,0)$ to the curve $y=x^{6}$ is/are
6. The equation $k x^{2}+x+k=0$ and $k x^{2}+k x+1=0$ have exactly one root in common for
A. $k=-\frac{1}{2}, 1$
B. $k=1$
C. $k=-\frac{1}{2}$
D. $k=\frac{1}{2}$

Answer: C

7. The terms $\tan 80^{\circ}, \tan 70^{\circ}+\tan 10^{\circ}$ and $\tan 10^{\circ}$ are in
A. artithmetic progression
B. geometric progression
C. harmonic progression
D. none of these

- Watch Video Solution

8. If $a^{2}+b=2$, then maximum value of the term independent of x in the expansion of $\left(a x^{\frac{1}{6}}+b x^{-\frac{1}{3}}\right)^{9}$ is $(a>0 ; b>0)$
A. 48
B. 84
C. 42
D. 168

Answer: B

- Watch Video Solution

9. The number of even numbers of four digits that can be formed using the digits $0,1,2,3,4$ and 5 is
A. 180
B. 156
C. 144
D. 198

Answer: B

- Watch Video Solution

10. If $f: R \rightarrow A$ defined as $f(x)=\tan ^{-1}\left(\sqrt{4\left(x^{2}+x+1\right)}\right)$ is surjective, then A is equal to
A. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[0, \frac{\pi}{2}\right)$
C. $\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$
D. $\left(0, \frac{\pi}{3}\right]$

Answer: C

Watch Video Solution

11. If the line $y=x-1$ bisects two chords of the parabola $y^{2}=4 b x$ which are passing through the point $(b,-2 b)$, then the length of the latus rectum can be equal to

- Watch Video Solution

12. The centre of the circule passing through the points of intersection of the curves $(2 x+3 y+4)(3 x+2 y-1)=0$ and $x y=0$ is
A. $\left(\frac{5}{6},-\frac{5}{12}\right)$
B. $\left(-\frac{5}{6},-\frac{5}{12}\right)$
C. $\left(\frac{5}{12},-\frac{5}{6}\right)$
D. $\left(-\frac{5}{12}, \frac{5}{6}\right)$

Answer: B

13. If $x=\sec t+\tan t$ and $y=\sec t-\tan t$, where t is a parameter, then the value of $\frac{d y}{d x}$ when $x=\frac{1}{\sqrt{3}}$ is
A. 0
B. -3
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

14. Let p, q and r be three statements. Consider two compound statements

$$
S_{1}:(p \Rightarrow q) \Rightarrow r \equiv p \Rightarrow(q \Rightarrow r)
$$

$S_{2}:(p \Leftrightarrow q) \Leftrightarrow r \equiv p \Leftrightarrow(q \Leftrightarrow r)$ State in order, whether S_{1}, S_{2} are true of false. (where, T represents true F represents false)
A. TT
B. TF
C. FT
D. FF

Answer: C

- Watch Video Solution

15. Let the equations of side $B C$ and the internal angle bisector of angle B of $\triangle A B C$ are $2 x-5 y+a=0$ and $y+x=0$ respectively. If $A=(2,3)$
, then the value of of a is equal to
A. 4
B. 2
C. -2
D. -4

- Watch Video Solution

16. The mean and variance of 20 observations are found to be 10 and 4 respectively. On rechecking, it was found that an observation 8 is incorrect. If the wrong observation is omitted, then the correct variance is
A. 7
B. $\frac{100}{16}$
C. $\frac{1400}{361}$
D. $\frac{1440}{361}$

Answer: D

- Watch Video Solution

17. A box contains 9 slips bearing numbers $-3,-2,-1,0,1,2,3,4$ and 5 . An experiment consists of drawing a slip from this box and replacing it back in the box after noting the number. This experiment is repeated 9 times. This experiment is repeaed 9 times. These 9 numbers are now chosen as elements of 3×3 matrix, then the probability that the matrix is skew symmetric is
A. $\frac{1}{9^{6}}$
B. $\frac{343}{9^{9}}$
C. $\frac{1}{9^{9}}$
D. $\frac{1}{9^{7}}$

Answer: B

- Watch Video Solution

18. If A and B are non - singular matrices of order three such that $\operatorname{adj}(A B)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right]$ and $\left|B^{2} a d j A\right|=\alpha^{2}+3 \alpha-8$, then the value of α is equal to
A. $\frac{9}{5}$
B. $\frac{8}{5}$
C. 3
D. 2

Answer: A

- Watch Video Solution

19.

If
the
planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1, \vec{r} \cdot(\hat{i}+2 a \hat{j}+\hat{k})=2$ and $\vec{r} \cdot\left(a \hat{i}+a^{2} \hat{j}+\hat{k}\right)=3$ intersect in a line, then the possible number of real values of a is
20. The value of $\lim _{x \rightarrow 1^{-}} \frac{\sqrt{\pi}-\sqrt{4 \tan ^{-1} x}}{\sqrt{1-x}}$ is equal to
A. $2 \sqrt{\pi}$
B. $\frac{1}{2 \sqrt{\pi}}$
C. $4 \sqrt{\pi}$
D. 0

Answer: D

D Watch Video Solution

21. The area (in sq. units) bounded by the curve $y=\max \cdot\left(x^{3}, x^{4}\right)$ and the x -axis from $x=0$ to $x=1$ is

- Watch Video Solution

22. A vertical tower subtends an angle of 60° at a point on the same level as the foot of the tower. On moving 100 m further from the first point in line with the tower, it subtends an angle of 30° at the point. If the height of the tower is Hm , then the value of $\frac{H}{25 \sqrt{3}}$ (in meters) is

- Watch Video Solution

23. If the arguments of $(1-i)(\sqrt{3}+i)(1+\sqrt{3} i)$ and $(Z-2)(\bar{Z}-1)$ are equal, then the locus to Z is part of a circle with centre (a, b). The value of $\frac{1}{a+b}$ is

- Watch Video Solution

24. Let

$$
\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

$\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ and $(\vec{x} \times \vec{b})=(\vec{a} \times \vec{c}) \times \vec{b}$. If $\vec{x} \cdot \vec{a}=0$, then $|\vec{x}|$ is equal to use $\sqrt{3}=1.73$)
25. Let $f(x)=\left\{\begin{array}{ll}a & , x=\frac{\pi}{2} \\ \frac{\sqrt{2 x-\pi}}{\sqrt{9+\sqrt{2 x-\pi}}-b} & , x>\frac{\pi}{2}\end{array}\right.$. If $f(x)$ is continuous at
$x=\frac{\pi}{2}$, then the value of $\frac{a^{2}}{5 b}$ is

- Watch Video Solution

