©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 30

Mathematics

1. The number of solutions of the equation
$z^{3}+\frac{3(\bar{z})^{2}}{|z|}=0$ (where, z is a complex number)
are
A. 2
B. 3
C. 6
D. 5

Answer: D

- Watch Video Solution

2. If $f(x)=\left(x^{3}+x+1\right) \tan (\pi[x])$ (where, $[x]$ represents the greatest integer part of x), then
A. domain of $\mathrm{f}(\mathrm{x})$ is $R-(2 n+1) \frac{\pi}{2}, n \in I$
B. range of $f(x) \in R$
C. $f(x)$ is an even function
D. $f(x)$ is a non-periodic function

Answer: C

D Watch Video Solution

3. A five digit number is chosen at random. The probability that all the digits are distinct and digits at odd places are odd and digits at even places are even, is

$$
\begin{aligned}
& \text { A. } .^{5} P_{2} \times \frac{.{ }^{5} P_{3}}{9 \times 10^{4}} \\
& \text { B. } \frac{{ }^{5} P_{2} \times .{ }^{5} P_{3}}{10^{5}} \\
& \text { C. } \frac{{ }^{5} C_{2} \times .{ }^{5} C_{3} \times 2}{10^{4} \times 9} \\
& \text { D. } \frac{{ }^{5} C_{2} \times .{ }^{5} C_{3}}{9 \times 10^{4}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. The length of the focal chord of the parabola $y^{2}=4 x$ at a distance of 0.4 units from the origin is
A. 22 units
B. 23 units
C. 24 units
D. 25 units

Answer: D

- Watch Video Solution

5. If p, q, r in N, then the number of points having position vector $p \hat{i}+q \hat{j}+r \hat{k}$ such that $8 \leq p+q+r \leq 12$ are
A. 110
B. 185
C. 144
D. 108

Answer: B

- Watch Video Solution

6. Let α, β and γ be the roots of the equation $x^{3}+6 x^{2}-p x-42=0$. If α, β and γ are in arithmetic progression then $|\alpha|+|\beta|+|\gamma|=$
A. 10
B. 11
C. 12
D. 13

Answer: C

- Watch Video Solution

7. The solution of the differential equation $\frac{y d x-x d y}{x y}=x d x+y d y$ is (where, C is an arbitrary constant)
A. $\frac{x}{y}=x+y+C$
B. $\frac{x}{y}=\frac{x^{2}+y^{2}}{2}+c$
C. $\ln \left(\frac{x}{y}\right)=x^{2}+y^{2}+C$
D. $2 \ln \left(\frac{x}{y}\right)=x^{2}+y^{2}+C$

Answer: D

- Watch Video Solution

8. If a circle drawn by assuming a chord parallel to
the transverse axis of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ as diameter always pases through $(2,0)$, then
A. $|a|=|b|=2$
B. $|b| \neq|a|$
C. $|b|=|a|=1$
D. $|b|=|a|=3$

Answer: A

- Watch Video Solution

9. If A is a square matrix of order 2×2 and $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, such that $A B=B A$, then A can be
A. $\left[\begin{array}{ll}1 & 4 \\ 6 & 7\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 4 \\ 7 & 6\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 2 \\ 2 & 4\end{array}\right]$
D. $\left[\begin{array}{ll}3 & 4 \\ 4 & 9\end{array}\right]$

Answer: A

- Watch Video Solution

10. Let \oplus and \otimes are two mathematical
operators. If $p \oplus(p \otimes q)$ is not a tautology, then
\oplus and \otimes can be
A. \vee and \Rightarrow respectively
B. \Rightarrow and \wedge respectively
C. \Rightarrow and \vee respectively

D. None of these

Answer: B

- Watch Video Solution

11. The coefficient of x^{10} in the expansion of $(1+x)^{15}+(1+x)^{16}+(1+x)^{17}+\ldots+(1+x)^{30}$
A. . ${ }^{31} C_{10}-{ }^{15} C_{10}$
B. . ${ }^{31} C_{11}-{ }^{15} C_{11}$
C. . ${ }^{30} C_{10}-{ }^{15} C_{10}$
D. . ${ }^{31} C_{10}-{ }^{14} C_{11}$

Answer: B

D Watch Video Solution

12. A vector \vec{r} is equally inclined with the vectors
$\vec{a}=\cos \theta \hat{i}+\sin \theta \hat{j}, \vec{b}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ and
$\vec{c}=\hat{k}$, then the angle between \vec{r} and \vec{a} is

> A. $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
> B. $\cos ^{-1}\left(\frac{1}{3}\right)$
C. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cos ^{-1} \cdot \frac{1}{2}$

Answer: C

D Watch Video Solution

13. Let $f(x)$ be a non-constant polynomial such that $f(a)=f(b)=f(c)=2$. Then the minimum number of roots of the equation $f^{\prime \prime}(x)=0$ in $x \in(a, c)$ is/are
A. 2
B. 1
C. 0
D. 3

Answer: B

- Watch Video Solution

14. Let the incentre of $\triangle A B C$ is $\mathrm{l}(2,5)$. If
$A=(1,13) \quad$ and $\quad B=(-4,1), \quad$ then the
coordinates of C are
A. $(1,10)$
B. $(10,1)$
C. $(8,2)$
D. $(9,2)$

Answer: B

- Watch Video Solution

15. Lying in the plane $x+y+z=6$ is a line L passing through ($1,2,3$) and perpendicular to the
line of intersection of planes $x+y+z=6$ and $2 x-y+z=4$, then the equation of L is

$$
\begin{aligned}
& \text { A. } \frac{x-1}{4}=\frac{y-2}{-7}=\frac{z-3}{3} \\
& \text { B. } \frac{x-1}{2} \frac{y-2}{1}=\frac{z-3}{-3} \\
& \text { C. } \frac{x-1}{4}=\frac{y-2}{-5}=\frac{z-3}{1} \\
& \text { D. } \frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{-4}
\end{aligned}
$$

Answer: C

- Watch Video Solution

16. Let $P Q$ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then $2 r$ equals
A. $\sqrt{P Q \cdot R S}$
B. $\frac{P Q+R S}{2}$
C. $\frac{2 P Q \cdot R S}{P Q+R S}$
D. $\sqrt{\frac{P Q^{2}+R S^{2}}{2}}$

Answer: A

- Watch Video Solution

17. Let A and B are two matrices of order 3×3, where

$$
|A|=-2 \text { and }|B|=2
$$

then
$\left|A^{-1} a d j\left(B^{-1}\right) a d j\left(2 A^{-1}\right)\right|$ is equal to
A. 2
B. -2
C. 4
D. 8

Answer: B

- Watch Video Solution

18. The sum to infinite terms of the arithmetic gemoetric progression $3,4,4, \frac{32}{9}, \ldots \ldots$ is equal to
A. 27
B. 30
C. 24
D. 25

Answer: A

- Watch Video Solution

19. The value of $\int_{-1}^{1}\left(\sin ^{-1} x+\frac{x^{5}+x^{3}-1}{\cos x}\right) d x$ is equal to
A. $\tan 1$
B. 0
C. $2 \tan 1$

$$
\text { D. }-2 \tan 1
$$

Answer: D

- Watch Video Solution

20. If $E=\cos ^{2} 71^{\circ}+\cos ^{2} 49^{\circ}+\cos 71^{\circ} \cos 49^{\circ}$,
then the value of $10 E$ is equal to
A. 7.5
B. 2.5
C. 3.5
D. 4.5

Answer: A

- Watch Video Solution

21. If $x=3 \cos t$ and $y=5 \sin t$, where t is a
parameter, then $9 \frac{d^{2} y}{d x^{2}}$ at $t=-\frac{\pi}{6}$ is equal to
22. The area (in sq. units) of the region bounded by the curves $y=2-x^{2}$ and $y=|x|$ is k , then the value of $3 k$ is

D Watch Video Solution

23. A number equal to 2 times the mean and with a frequency equal to k is inserted in a data having n observation. If the new mean is $\frac{4}{3}$ times the old mean, then the value of $\frac{k}{n}$ is

Watch Video Solution

24. If $f(x)= \begin{cases}\frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-a} & x>0 \\ c & x=0 \\ \frac{4 e^{\frac{2}{x}}+3 e^{\frac{1}{x}}}{e^{\frac{2}{x}}+b e^{\frac{1}{x}}} & x<0\end{cases}$
continuous at $\mathrm{x}=0$ for some constants a, b and c ,
then the value of $\frac{50 b}{a}$ is equal to

D Watch Video Solution

25. The integral $I=\int\left(\sin \left(x^{2}\right)+2 x^{2} \cos \left(x^{2}\right)\right) d x$
(where $=x h(x)+c, \mathrm{C}$ is the constant of integration). If the range of $H(x)$ is $[a, b]$, then the value of $a+2 b$ is equal to

