đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 31

Mathematics

1. Let A be the set of values of k for which 2 lies
between the roots of the quadratic equation
$x^{2}+(k+2) x-(k+3)=0$, then A is given
by
A. $(-\infty,-5)$
B. $(5, \infty)$
C. $(-\infty,-5]$
D. $[5, \infty)$

Answer: A
(Watch Video Solution
2. Two poles standing on horizontal ground are of heights 10 meters \& 40 meters respectively. The line joining their tops makes an angle of 30° with the ground. The the distance (in meters) between the foot of the poles is
A. 20
B. 30
C. $20 \sqrt{3}$
D. $30 \sqrt{3}$

Answer: D

- Watch Video Solution

3. If in triangle $A B C, A \equiv(1,10)$, circumcentre $\equiv\left(-\frac{1}{3}, \frac{2}{3}\right)$ and orthocentre $\equiv\left(\frac{11}{3}, \frac{4}{3}\right)$ then the co-ordinates of midpoint of side opposite to A is $\left(1,-\frac{11}{3}\right)$

$$
\begin{equation*}
(1,5)(\mathrm{c})(1,-3)(\mathrm{d})(1,6) \tag{b}
\end{equation*}
$$

$$
\text { A. }\left(1, \frac{-11}{3}\right)
$$

$$
\text { B. }\left(1, \frac{-22}{3}\right)
$$

C. $\left(2, \frac{-11}{3}\right)$

$$
\text { D. }\left(-1, \frac{11}{3}\right)
$$

Answer: A

D Watch Video Solution

4. The means of two samples of size 40 and 50
were found to be 54 and 63 respectively. Their standard deviations were 6 and 9 respectively.

The variance of the combined sample of size 90 is
A. 90
B. 7
C. 9
D. 81

Answer: D

D Watch Video Solution

5.

$f(\tan x)=\sin 2 x: x \neq(2 n+1) \frac{\pi}{2}, n \in I$
then which of the following is an incorrect statement?
A. Domain
of
$f(x)$

$$
r-(2 n+1) \frac{\pi}{2}, n \in I
$$

B. Range of $f(x)$ is $[-1,1]$
C. $f(x)$ is odd function
D. ${ }^{\mathrm{f}}(\mathrm{x})$ is many - one function

Answer: A
6. The area bounded by the curve
$y=x^{2}(x-1)^{2}$ with the x - axis is k sq. units.

Then the value of 60 k is equal to
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B
7. Let $O=(0,0), A=(3,0), B=(0,-1)$
and $C=(3,2)$, then the minimum value of
$|z|=|z-3|+|z+i|+|z-3-2 i|$ occurs
at the (where, z is complex number)
A. point of intersection of $A B$ and $C O$
B. point of intersection of $A C$ and BO
C. point of intersection of CB and AO
D. Mean of O, A, B, C

Answer: C

8. If $f(x)=\left\{\begin{array}{ll}2 x^{2}+3 & x \geq 3 \\ a x^{2}+b x+1 & x \leq 3\end{array}\right.$ is
differentiable everywhere, then $\frac{a}{b^{2}}$ is equal to
A. 5
B. $\frac{7}{3}$
C. 1
D. $\frac{16}{9}$

Answer: C

D Watch Video Solution
9. The sum of the series
$\frac{2}{1.2}+\frac{5}{2.3} 2^{1}+\frac{10}{3.4} 2^{2}+\frac{17}{4.5} 2^{3}+\ldots$. upto n
terms is equal :

$$
\begin{aligned}
& \text { A. } \frac{n}{n+1} \cdot 2^{n+1} \\
& \text { B. } \frac{n+1}{n} \cdot 2^{n+1} \\
& \text { C. } \frac{n}{n+1} \cdot 2^{n} \\
& \text { D. } \frac{n+1}{n} \cdot 2^{n}
\end{aligned}
$$

Answer: C

10. The number of five digit numbers formed
with the digits $0,1,2,3,4$ and 5 (without repetition) and divisible by 6 are
A. 72
B. 84
C. 96
D. 108

Answer: D
11. Let \vec{A} be a vector parallel to the line of intersection of the planes P_{1} and P_{2}. The plane $\quad P_{1}$ is parallel to vectors
$2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 \hat{k}$ while plane P_{2} is parallel to the vectors $\hat{j}-\hat{k}$ and $\hat{i}+\hat{j}$. The acute angle between \vec{A} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$

5π
 12

Answer: B

- Watch Video Solution

12. If $y=\cos x \cos 2 x \cos 4 x \cos 8 x$, then
$\frac{d y}{d x}$ at $x=\frac{\pi}{2}$ is
A. 1
B. 0
C. 4

D. 16

Answer: A

D Watch Video Solution

13. Let points A_{1}, A_{2} and A_{3} lie on the parabola $y^{2}=8 x$. If $\triangle A_{1} A_{2} A_{3}$ is an equilateral triangle and normals at points
A_{1}, A_{2} and A_{3} on this parabola meet at the point (h, 0). Then the value of h I s
A. 24
B. 26
C. 38
D. 28

Answer: D

- Watch Video Solution

14. Let $I=\int_{0}^{24 \pi}\{\sin x\} d x$ then the value of

21 is equal to (where, $\{$.$\} denotes the$ fractional part function)
A. 10π
B. 24π
C. 12π
D. 4π

Answer: B

D Watch Video Solution

15. The line $2 x+y=3$ cuts the ellipse
$4 x^{2}+y^{2}=5$ at points P and Q . If θ is the
acute angle between the normals at P and Q ,
then θ is equal to

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{5}{3}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{3}{\sqrt{34}}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{3}{\sqrt{34}}\right) \\
& \text { D. } \cot ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

16. The shortest distance between the lines
$2 x+y+z-1=0=3 x+y+2 z-2$ and

$$
x=y=z, \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \text { units } \\
& \text { B. } \frac{1}{\sqrt{3}} \text { units } \\
& \text { C. } \frac{1}{\sqrt{4}} \text { units } \\
& \text { D. } \frac{1}{\sqrt{5}} \text { units }
\end{aligned}
$$

Answer: A

D Watch Video Solution
17. If $\left|\begin{array}{ccc}x+y & y+z & z+x \\ y+z & z+x & x+y \\ z+x & x+y & y+z\end{array}\right|=\mathrm{k}\left|\begin{array}{ccc}x & z & y \\ y & x & z \\ z & y & x\end{array}\right|$,
then k is equal to
A. -2
B. 2
C. -3
D. 3

Answer: A
(Watch Video Solution
18. Two circles of radii r_{1} and r_{2}, are both touching the coordinate axes and intersecting each other orthogonally. The value of $\frac{r_{1}}{r_{2}}$ (where $r_{1}>r_{2}$) equals -
A. 2
B. $2+\sqrt{3}$
C. $3+\sqrt{2}$
D. 3

Answer: B
19. A is a square matrix and I is an identity matrix of the same order. If $A^{3}=O$, then inverse of matrix $(I-A)$ is
A. $I+A$
B. $I-A+A^{2}$
C. $A+A^{2}$
D. $I+A+A^{2}$

Answer: D
20. The coefficient of x^{6} in the expansion of $\left(1+x+x^{2}\right)^{6}$ is
A. 131
B. 141
C. 151
D. 167

Answer: B
21. Let $\int e^{x} \cdot x^{2} d x=f(x) e^{x}+C$ (where, C is the constant of integration). The range of $f(x)$ as $x \in R$ is $[a, \infty)$. The value of $\frac{a}{4}$ is

D Watch Video Solution

22. The sum of the roots of the equation
$|\sqrt{3} \cos x-\sin x|=2$ in $[0,4 \pi]$ is $k \pi$, then the value of 6 k is
23. If $f(x)+2 f(1-x)=6 x(\forall x \in R)$, then
the vlaue of $\frac{3}{4}\left(\frac{f(8)}{f^{\prime}(1)}\right)$ is equal to

D Watch Video Solution

24. 4 different balls of green colour and 4 different balls of red colour are to be distributed equally among 4 people have balls of a different colour is λ, then the value of 7λ is equal to
25. The number of point(s) on the curve $y^{3}=12 y-3 x^{2}$ where a tangents is vertical is/are

D Watch Video Solution

