

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 33

Mathematics

1. Let $f(x)=\max{\{\tan x,\cot x\}}$. Then the number of roots of the equation $f(x)=rac{1}{2}$ in $(0,2\pi)$ is

A. 0

B. 1

C. 2

D. 4

Answer: A

2.

$$A = \{x : an x = \sec x, x \in [0, 4\pi] \} ext{ and } ext{ set } B = ig\{x : \sin^2 x = 1, x \in [0, 4\pi] \}$$

set

If

, then

A. $A\subset B$

 $\mathsf{B.}\, A=B$

 $\mathsf{C}.\,A\cap B=B$

 $\mathsf{D}.\, n(A\times B)=0$

Answer: D

Watch Video Solution

3. The number of eight - digit integers, with the sum of digits equal to 12 and formed by using of digits 1, 2 and 3 only are

A. 255

B. 277

C. 288

D. 266

Answer: D

Watch Video Solution

4. The mean and standard deviation of 10 observations $x_1, x_2, x_3, \ldots, x_{10}$ are \bar{x} and σ respectively. Let 10 is added to x_1, x_2, \ldots, x_9 and 90 is substracted from x_{10} . If still, the standard deviation is the same, then $x_{10} - \bar{x}$ is equal to

A. 35

B.45

C. 55

D. 50

Answer: B

5.	lf	lpha,eta	be	the	roots	of	$4x^8-16x+c=0, c\in R$ such that
1	< c	lpha < 2	and	2 < 1	eta < 3, '	then	n the number of integral values of c is
	A.	2					
	В.	3					
	C.	4					
	D.	5					
Answer: B							

6. A pole stands vertically in the center of a square. When 45° is the elevation of the sun, the tip of its shadow just reaches the side of the

square and is at a distance of 30 meters and 40 meters from the ends of that side. The height of the pole is

A. 50 meters

B. 25 meters

C. $25\sqrt{2}$ meters

D. $50\sqrt{2}$ meters

Answer: C

Watch Video Solution

7. If the area bounded by $y=x, y=\sin x \, ext{ and } \, x=rac{\pi}{2} ext{ is } \left(rac{\pi^2}{k}-1
ight)$ sq.

units then the value of k is equal to

A. 2

B. 3

C. 6

Answer: D

8. A bag contains 10 white and 3 black balls. Balls are drawn one-by-one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw, is

A.
$$\frac{15}{286}$$

B. $\frac{105}{286}$
C. $\frac{35}{286}$
D. $\frac{7}{286}$

Answer: A

9. Consider the function $f(x)=ig(x^3-xig)ig|x^2-6x+5ig|,\,orall x\in R$, then f(x) is

A. discontinuous at x = 1

B. discontinuous at x = 5

C. non differentiable at x = 1

D. non differentiable at x = 5

Answer: D

Watch Video Solution

10. The solution of the differential equation $rac{dy}{dx} + xy \ln y = x^3 y$ is equal

to (where, C is the constant of integration)

A.
$$\ln y = x^2 + C e^{-x^2}$$

B.
$$\ln y = x^2 - 2 + Ce^{-x^2}$$

C.
$$\ln y=x^2-2+ce^{-rac{x^2}{2}}$$

D.
$$\ln y = x^2 + Ce^{-rac{x^2}{2}}$$

Answer: C

Watch Video Solution

11. If
$$f\colon R o \left[rac{\pi}{3},\pi
ight)$$
 defined by $f(x)=\cos^{-1}\!\left(rac{\lambda-x^2}{x^2+2}
ight)$ is a surjective

function, then the value of λ is equal to

A. 0

B. 3

C. 2

D. 1

Answer: D

12. The first three terms of a geometric progression are 3, -1 and $\frac{1}{3}$. The

next term of the progression is

A. 2 B. -2C. $\frac{-1}{9}$ D. $\frac{-5}{9}$

Answer: C

Watch Video Solution

13. Let
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$$
 and I be the identity matrix of order 3. If $Q = [qij]$ is a matrix, such that $P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals

A. 52

B. 103

C. 201

D. 205

Answer: B

Watch Video Solution

14. The plane 2x-2y+z=3 is rotated about its line of intersection with the xy plane by an acute angle α . If the new position of the plane contains the point (3,1,1)then the value of $\cos \alpha$ =

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. $\frac{7}{9}$
D. $\frac{4}{9}$

Answer: C

15. Two tangents are drawn from a point (-4, 3) to the parabola $y^2 = 16x$. If α is the angle between them, then the value of $\cos \alpha$ is

Answer: A

16. The integral
$$I = \int 2^{(2^x + x)} dx = \lambda. (2^{2^x}) + C$$
 (where, C is the constant of integration). Then the value of $\sqrt{\lambda}$ is equal to

A.
$$\frac{1}{\ln 4}$$

B.
$$\frac{1}{(\ln 2)^2}$$

C.
$$\frac{1}{\ln 2}$$

D. $\frac{1}{(\ln 4)^2}$

Answer: C

17. The function $y=x^4-8x^3+22x^2-24x+10$ attains local maximum

of minimum at x = a, x = b and x = c(a < b < c). Then a, b and c are

in

- A. Geometric progression
- B. Harmonic progression
- C. Arithmetic progression
- D. none of these

Answer: C

18. The radius of the circle touching the line x+y=4 at (1,3) and intersecting $x^2+y^2=4$ orthogonally is

A.
$$\frac{3\sqrt{2}}{4}$$
 units
B. $\frac{3}{4}$ units
C. $\frac{3}{\sqrt{2}}$ units
D. $\frac{4\sqrt{2}}{3}$ units

Answer: A

Watch Video Solution

19. The value of the integral
$$\int_{-3\pi}^{3\pi} |\sin^3 x| dx$$
 is equal to

A. π

 $\mathsf{B.}\,8\pi$

C. 1

Answer: D

Watch Video Solution

20. Let B and C are points of interection of the parabola $y = x^2$ and the circle $x^2 + (y-2)^2 = 8$. The area of the triangle OBC, where O is the origin, is

A. 2

B. 4

C. 6

D. 8

Answer: D

$$\lim_{x
ightarrow 0} \, \left(rac{1}{x^{18}}
ight)\! 1 - \cos\!\left(rac{x^3}{3}
ight) - \cos\!\left(rac{x^6}{6}
ight) + \cos\!\left(rac{x^3}{3}
ight)\! . \cos\!\left(rac{x^6}{6}
ight)\!
ight)\!\lambda^2$$
,

then the value of 900λ is equal to $(\mathrm{here}, \ \lambda > 0)$

Watch Video Solution

22. The equation
$$Imigg(rac{iz-2}{z-i}igg)+1=0,$$
 $z\&arepsilon$ $C,$ $z
eq i$ represents a part

of a circle having radius equal to.4

Watch Video Solution

23. In the expansion of $(ax + b)^{2020}$, if the coefficient of x^2 and x^3 are

equal, then the value of $\frac{9}{100}\left(\frac{b}{a}\right)$ is equal to

Watch Video Solution

24. If A is an invertible matrix of order 3 and B is another matrix of the same order as of A, such that $|B|=2, A^T|A|B=A|B|B^T$. If

$$\left|AB^{-1}adjig(A^TBig)^{-1}
ight|=K$$
, then the value of 4K is equal to

Watch Video Solution

25. If the line segment joining P(2, 3) and Q(5, 7) subtends a right angle at

R(x, y) and the area of $\Delta PQR=2$ sq. units, then the maximum number

of such points R is xy - plane are