© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 33

Mathematics

1. Let $f(x)=\max \{\tan x, \cot x\}$. Then the number of roots of the equation $f(x)=\frac{1}{2}$ in $(0,2 \pi)$ is
A. 0
B. 1
C. 2
D. 4

Watch Video Solution

2.

$A=\{x: \tan x=\sec x, x \in[0,4 \pi]\}$ and set $B=\left\{x: \sin ^{2} x=1, x \in[0\right.$, then
A. $A \subset B$
B. $A=B$
C. $A \cap B=B$
D. $n(A \times B)=0$

Answer: D

- Watch Video Solution

3. The number of eight - digit integers, with the sum of digits equal to 12 and formed by using of digits 1, 2 and 3 only are
A. 255
B. 277
C. 288
D. 266

Answer: D

- Watch Video Solution

4. The mean and standard deviation of 10 observations $x_{1}, x_{2}, x_{3} \ldots \ldots x_{10}$ are \bar{x} and σ respectively. Let 10 is added to $x_{1}, x_{2} \ldots \ldots x_{9}$ and 90 is substracted from x_{10}. If still, the standard deviation is the same, then $x_{10}-\bar{x}$ is equal to
A. 35
B. 45
C. 55
D. 50

D Watch Video Solution

5. If α, β be the roots of $4 x^{8}-16 x+c=0, c \in R$ such that
$1<\alpha<2$ and $2<\beta<3$, then the number of integral values of c is
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

6. A pole stands vertically in the center of a square. When 45° is the elevation of the sun, the tip of its shadow just reaches the side of the
square and is at a distance of 30 meters and 40 meters from the ends of that side. The height of the pole is
A. 50 meters
B. 25 meters
C. $25 \sqrt{2}$ meters
D. $50 \sqrt{2}$ meters

Answer: C

- Watch Video Solution

7. If the area bounded by $y=x, y=\sin x$ and $x=\frac{\pi}{2}$ is $\left(\frac{\pi^{2}}{k}-1\right)$ sq. units then the value of k is equal to
A. 2
B. 3
C. 6
D. 8

Answer: D

- Watch Video Solution

8. A bag contains 10 white and 3 black balls. Balls are drawn one-by-one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw, is
A. $\frac{15}{286}$
B. $\frac{105}{286}$
C. $\frac{35}{286}$
D. $\frac{7}{286}$

Answer: A

- Watch Video Solution

9. Consider the function $f(x)=\left(x^{3}-x\right)\left|x^{2}-6 x+5\right|, \forall x \in R$, then $f(x)$ is
A. discontinuous at $\mathrm{x}=1$
B. discontinuous at $\mathrm{x}=5$
C. non differentiable at $x=1$
D. non differentiable at $\mathrm{x}=5$

Answer: D

- Watch Video Solution

10. The solution of the differential equation $\frac{d y}{d x}+x y \ln y=x^{3} y$ is equal to (where, C is the constant of integration)
A. $\ln y=x^{2}+C e^{-x^{2}}$
B. $\ln y=x^{2}-2+C e^{-x^{2}}$
C. $\ln y=x^{2}-2+c e^{-\frac{x^{2}}{2}}$
D. $\ln y=x^{2}+C e^{-\frac{x^{2}}{2}}$

Answer: C

- Watch Video Solution

11. If $f: R \rightarrow\left[\frac{\pi}{3}, \pi\right)$ defined by $f(x)=\cos ^{-1}\left(\frac{\lambda-x^{2}}{x^{2}+2}\right)$ is a surjective function, then the value of λ is equal to
A. 0
B. 3
C. 2
D. 1

Answer: D

12. The first three terms of a geometric progression are $3,-1$ and $\frac{1}{3}$. The next term of the progression is
A. 2
B. -2
C. $\frac{-1}{9}$
D. $\frac{-5}{9}$

Answer: C

- Watch Video Solution

13. Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3 . If
$Q=[q i j]$ is a matrix, such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
A. 52
B. 103
C. 201
D. 205

Answer: B

- Watch Video Solution

14. The plane $2 x-2 y+z=3$ is rotated about its line of intersection with the $x-$ y plane by an acute angle α. If the new position of the plane contains the point (3,1,)then thevalue of $\cos \alpha=$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{7}{9}$
D. $\frac{4}{9}$

Answer: C

15. Two tangents are drawn from a point $(-4,3)$ to the parabola $y^{2}=16 x$. If α is the angle between them, then the value of $\cos \alpha$ is
A. 0
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

16. The integral $I=\int 2^{\left(2^{x}+x\right)} d x=\lambda .\left(2^{2^{x}}\right)+C$ (where, C is the constant of integration). Then the value of $\sqrt{\lambda}$ is equal to
A. $\frac{1}{\ln 4}$
B. $\frac{1}{(\ln 2)^{2}}$
C. $\frac{1}{\ln 2}$
D. $\frac{1}{(\ln 4)^{2}}$

Answer: C

- Watch Video Solution

17. The function $y=x^{4}-8 x^{3}+22 x^{2}-24 x+10$ attains local maximum of minimum at $x=a, x=b$ and $x=c(a<b<c)$. Then a, b and c are in
A. Geometric progression
B. Harmonic progression
C. Arithmetic progression
D. none of these

Answer: C

18. The radius of the circle touching the line $x+y=4$ at $(1,3)$ and intersecting $x^{2}+y^{2}=4$ orthogonally is
A. $\frac{3 \sqrt{2}}{4}$ units
B. $\frac{3}{4}$ units
C. $\frac{3}{\sqrt{2}}$ units
D. $\frac{4 \sqrt{2}}{3}$ units

Answer: A

Watch Video Solution

19. The value of the integral $\int_{-3 \pi}^{3 \pi}\left|\sin ^{3} x\right| d x$ is equal to
A. π
B. 8π
C. 1
D. 8

Answer: D

- Watch Video Solution

20. Let B and C are points of interection of the parabola $y=x^{2}$ and the circle $x^{2}+(y-2)^{2}=8$. The area of the triangle OBC, where O is the origin, is
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

$$
\left.\lim _{x \rightarrow 0}\left(\frac{1}{x^{18}}\right) 1-\cos \left(\frac{x^{3}}{3}\right)-\cos \left(\frac{x^{6}}{6}\right)+\cos \left(\frac{x^{3}}{3}\right) \cdot \cos \left(\frac{x^{6}}{6}\right)\right) \lambda^{2},
$$ then the value of 900λ is equal to (here, $\lambda>0$)

- Watch Video Solution

22. The equation $\operatorname{Im}\left(\frac{i z-2}{z-i}\right)+1=0, z \& \varepsilon ; C, z \neq i$ represents a part of a circle having radius equal to. 4

- Watch Video Solution

23. In the expansion of $(a x+b)^{2020}$, if the coefficient of x^{2} and x^{3} are equal, then the value of $\frac{9}{100}\left(\frac{b}{a}\right)$ is equal to

- Watch Video Solution

24. If A is an invertible matrix of order 3 and B is another matrix of the same order as of A , such that $|B|=2, A^{T}|A| B=A|B| B^{T}$. If
$\left|A B^{-1} \operatorname{adj}\left(A^{T} B\right)^{-1}\right|=K$, then the value of 4 K is equal to

- Watch Video Solution

25. If the line segment joining $P(2,3)$ and $Q(5,7)$ subtends a right angle at $\mathrm{R}(\mathrm{x}, \mathrm{y})$ and the area of $\triangle P Q R=2$ sq. units, then the maximum number of such points R is $x y$ - plane are

- Watch Video Solution

