© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 34

Mathematics

1. The value of $\int_{\pi}^{2 \pi}[2 \sin x] d x$ is equal to (where [.] represents the greatest integer function)
A. $-\pi$
B. $\frac{5 \pi}{3}$
C. $\frac{-5 \pi}{3}$
D. -2π

- Watch Video Solution

2. If $\log _{\cos x} \sin x \geq 2$ and $0 \leq x \leq 3 \pi$, then the value of $\sin x$ lies in the interval $\left(0, \frac{\sqrt{a}-b}{2}\right]$ then value of $a-b$ is
A. 3
B. 4
C. 5
D. None of these

Answer: B

- Watch Video Solution

3.

$1^{2}+2^{2}+3^{2}++2003^{2}=(2003)(4007)(334)$ and $(1)(2003)+(2)(2002)+$
equals 2005 b. 2004 c. 2003 d. 2001
A. 2005
B. 2004
C. 2003
D. 2001

Answer: A

- Watch Video Solution

4. The population $p(t)$ at a time t of a certain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p(t)-450$. If $p(0)=850$. Then the time at which the population becomes zero is
A. $\frac{1}{2} \ln 18$
B. $\ln 18$
C. $2 \ln 18$
D. $\ln 9$

Answer: C

- Watch Video Solution

5. If the area (in sq. units) of the triangle formed by the intersection of a line parallel to the x - axis and passing through the point $P(h, k)$ with the line $y=x$ and $x+y=2$ is $4 h^{2}$, then the locus of the point P is

- Watch Video Solution

6. The value of $\int \frac{\sin x-\cos x}{\sqrt{\sin 2 x} d x}$ is equal to

- Watch Video Solution

7. The projection of the line $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{3}$ on a plane P is $\frac{x-1}{1}=\frac{y+1}{2}=\frac{z-2}{1}$, then the equation of the plane P is
A. $5 x-8 y+11 z=35$
B. $5 x+8 y-21 z+45=0$
C. $5 x+8 y+11 z=35$
D. $5 x-8 y+21 z=45$

Answer: A

- Watch Video Solution

8. Consider the function $f(x)=(\sin 2 x)^{\tan ^{2} 2 x}, x \in \frac{\pi}{4}$. The value of $f\left(\frac{\pi}{4}\right)$ such that f is continuous at $x=\frac{\pi}{4}$ is
A. \sqrt{e}
B. $1 / \sqrt{e}$
C. 2
D. None of these

Watch Video Solution

9. Let $A=\left[\begin{array}{ccc}-1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$ be a matrix, then $|a| a d j\left(A^{-1}\right)$ is equal to
A. $O_{3 \times 3}$
B. $\left[\begin{array}{ccc}-1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$
C. I_{3}
D. $\left[\begin{array}{ccc}-3 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & -3\end{array}\right]$

Answer: B

- Watch Video Solution

10. A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes at points $A a n d B$, respectively. If C is the center of the ellipse, then find area of triangle $A B C$.
A. 48 sq. units
B. 9 sq. units
C. 24 sq. units
D. 16 sq. units

Answer: C

D Watch Video Solution

11. The locus of a point z represented by the equation $|z-1|=|z-i|$ on the argand plane is (where, $z \in C, I=\sqrt{-1}$)
A. a circle of radius 1
B. an ellipse with foci at 1 and $-i$
C. a line passing through the origin
D. a circle on the line joining 1 and $-i$ as diameter

Answer: C

12. If $\left(1+x+x^{2}\right)^{25}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots \ldots \ldots \ldots . a_{50} x^{50}$ then the value of
$a_{0}+a_{2}+a_{4}+\ldots \ldots \ldots \ldots .+a_{50}$ is
A. odd and of the form $3 n$
B. odd and of the form $(3 n-1)$
C. odd and of the form $(3 n+1)$
D. even

Answer: D

Watch Video Solution

13. Let $f(x)=2 x+1 . \forall x$, then the solution of the equation $f(x)=f^{-1}(x)$ is
A. $x=-1$
B. $x=2$
C. $x=\frac{1}{2}$
D. $x=3$

Answer: A

- Watch Video Solution

14. A bag contains 5 balls of unknown colours. A ball is drawn at random from it and is found to be red. Then the probability that all tha balls in the bag are red, is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{2}{5}$
D. $\frac{1}{3}$

- Watch Video Solution

15. The set of points on the axis of the parabola $y^{2}-2 y-4 x+5=0$ from which all the three normals drawn to the parabola are real and distinct, is
A. $\{(x, 1): x>3\}$
B. $\{(x,-1): x \geq 1\}$
C. $\{(x, 3): x \geq 1\}$
D. $\{(x,-3): x \geq 3\}$

Answer: A

16. Let P be a non - singular matrix such that $I+P+P^{2}+\ldots \ldots P^{n}=O$ (where O denotes the null matrix), then P^{-1} is
A. P^{n}
B. $-P^{n}$
C. $-\left(1+P+P^{2}+\ldots \ldots+P^{n}\right)$
D. None of these

Answer: A

- Watch Video Solution

17. If the mean of 10 observation is 50 and the sum of the square of the deviations of observation from the mean is 250 , then the coefficient of variation of these observation is
A. 25
B. 50
C. 10
D. 5

Answer: C

- Watch Video Solution

18. If $\vec{a}=\frac{3 \hat{i}-\hat{j}}{\sqrt{10}}$ and $\vec{b}=\frac{\hat{i}+3 \hat{j}+\hat{k}}{\sqrt{11}}$, then the value of $(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-3 \vec{b})]$
A. 5
B. 7
C. 8
D. 9

Answer: B

19. The area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x -axis is
A. $\frac{a^{2}}{3}$ sq. units
B. $\frac{a^{2}}{4}$ sq. units
C. $\frac{3 a^{2}}{4}$ sq. units
D. $\frac{a^{2}}{12}$ sq. units

Answer: D

D Watch Video Solution

20. The denominator of a fraction exceeds the square of the numberator by 16 , then the least value of the fraction is
A. $-\frac{1}{4}$
B. $-\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{16}$

Answer: B

- Watch Video Solution

21. The centres of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 unit from each other. Let P be the mid-point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C , then the radius of the circle C , is

- Watch Video Solution

22. If the value of the expression $\tan \left(\frac{1}{2} \cos ^{-1} \cdot \frac{2}{\sqrt{5}}\right)$ is in the form of $a+\sqrt{b}$ where $a, b \in Z$, then the value of $\frac{a+b}{b}$ is
23. Let $f(x)=x^{2}-4 x-3, x>2$ and $g(x)$ be the inverse of $f(x)$. Then the value $f o\left(g^{\prime}\right)$ where $f(x)=2, \quad$ is (here, g ' represents the first derivative of g)

- Watch Video Solution

24. The number of 4 letter words (with or without meaning) that can be formed from the letter of the work EXAMINATION is

- Watch Video Solution

25. The value of a for which both the roots of the equation $\left(1-a^{2}\right) x^{2}+2 a x-1=0$ lie between 0 and 1 , will always be greater than
