© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 35

Mathematics

1. If $f(x)||2 \sin x-1|-2 \cot x|$, then the value of $f^{\prime}\left(\frac{\pi}{3}\right)$ is equal to
A. 0
B. $-\frac{5}{3}$
C. $\frac{5}{3}$
D. $\frac{8}{3}$

Answer: C

2. Let p : Maths is intersting and q : Maths is easy, then $p \Rightarrow(\sim p \vee q)$ is equivalent to
A. It Maths is easy then it is interesting
B. Either Maths is interesting or it easy
C. If Maths is interseting then it is easy
D. Maths is neither interesting nor easy

Answer: C

- Watch Video Solution

3. If $f(x)=\frac{x^{2}-\left[x^{2}\right]}{1+x^{2}-\left[x^{2}\right]}$ (where [.] represents the greatest integer part of x), then the range of $f(x)$ is
A. $[0,1)$
B. $(-1,1)$
C. $(0, \infty)$
D. $\left[0, \frac{1}{2}\right)$

Answer: D

- Watch Video Solution

4. The area bounded by the curve $y=\sin ^{-1}(\sin x)$ and the x - axis from $x=0$ to $x=4 \pi$ is equal to the area bounded by the curve $y=\cos ^{-1}(\cos x)$ and the x - axis from $x=-\pi$ to $x=a$, then the value of a is equal to
A. $\frac{\pi}{2}$
B. 2π
C. π
D. $\frac{3 \pi}{2}$

- Watch Video Solution

5. If both the roots of the equation $x^{2}+(a-1) x+a=0$ are positive, the the complete solution set of real values of a is
A. $(0, \infty)$
B. $(0,1)$
C. $(0,3-2 \sqrt{2})$
D. $(3-2 \sqrt{2}, 1)$

Answer: C

D Watch Video Solution

6. If $f(x)=\min \left\{\left(\sqrt{9-x^{2}}, \sqrt{1+x^{2}}\right)\right\}, \forall, x \in[-3,3]$ then the number of point(s) where $f(x)$ is non-differentiable is/are
A. 4
B. 3
C. 2
D. 0

Answer: A

- Watch Video Solution

7. Let $f(x)=\sin ^{-1}\left\{x \sqrt{1-x}-\sqrt{x\left(1-x^{2}\right)}\right\}, \forall 0 \leq x \leq 1$ then $f(x)$ is
A. negative
B. positive
C. non-negative
D. non - positive
8. Let \vec{q} and \vec{r} be non - collinear vectors, If \vec{p} is a vector such that $\vec{p} \cdot(\vec{q}+\vec{r})=4$ and $\vec{p} \times(\vec{q} \times \vec{r})=\left(x^{2}-2 x+9\right) \vec{q}$ then $+($ sin (x, y) lies on the line
A. $x+y=0$
B. $x-y=0$
C. $x=1$
D. $y=\pi$

Answer: C

- Watch Video Solution

9. If z_{1}, z_{2} and z_{3} are 3 distinct complex numbers such that $\frac{3}{\left|z_{1}-z_{2}\right|}=\frac{5}{\left|z_{2}-z_{3}\right|}=\frac{7}{\left|z_{3}-z_{1}\right|}$,
$\frac{9}{z_{1}-z_{2}}+\frac{25}{z_{2}-z_{3}}+\frac{49}{z_{3}-z_{1}}$ is equal to
A. 0
B. 1
C. -1
D. 15

Answer: A

- Watch Video Solution

10. An ellipse has foci $(4,2),(2,2)$ and it passes through the point $P(2,4)$.

The eccentricity of the ellipse is
A. $\tan \cdot \frac{\pi}{10}$
B. $\tan \cdot \frac{\pi}{12}$
C. $\tan \cdot \frac{\pi}{6}$
D. $\tan \frac{\pi}{8}$
11. If the integral $\int \frac{x^{4}+x^{2}+1}{x^{2} x-x+1} d x=f(x)+C$, (where C is the constant of integration and $x \in R$), then the minimum value of $f^{\prime}(x)$ is
A. 1
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. 2

Answer: C

Watch Video Solution

12. The value of $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{2^{r}+3^{r}}{6^{r}}$ is equal to
A. 0
B. 1
C. 6
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

13. The coefficient of x^{4} in the expansion of $\left(1-x-2 x^{2}\right)^{8}$ is
A. 144
B. -144
C. 154
D. -154

Answer: D

14. The number of roots of the equation $\tan x+\sec x=2 \cos x$ in $[0,4 \pi]$ is
A. 2
B. 4
C. 6
D. 0

Answer: B

- Watch Video Solution

15. If $a=\int_{0}^{1} \frac{\cos (\sin x)}{\sec x} d x$, then the value of $a^{2} \cos ^{2}(\sin 1)$ is equal to
A. 0
B. 1
C. $\sin (1)$
D. $\sin (\sin 1)$

Answer: B

- Watch Video Solution

16. If the largest interval of x in which the function $f(x)=x^{3}-3 x+1$ is decreasing is (a, b), then the value of $a+2 b$ is equal to
A. -1
B. 0
C. 1
D. 2

Answer: C

$P_{1}=x+y+z+1=0, P_{2}=x-y+2 z+1=0, P_{3}=3 x+y+4 z+7$ be three planes. Find the distance of line of intersection of planes $P_{1}=0$ and $P_{2}=0$ from the plane $P_{3}=0$.
A. $\frac{2}{\sqrt{26}}$ units
B. $\frac{1}{\sqrt{26}}$ units
C. $\frac{4}{\sqrt{26}}$ units
D. $\frac{7}{\sqrt{26}}$ units

Answer: C

Watch Video Solution

18. If $x_{1}, x_{2}, x_{3} \ldots . x_{34}$ are numbers such that
$x_{i}=x_{i+1}=150, \forall I \in\{1,2,3,4, \ldots .9\} \quad$ and
$x_{i+1}-x_{i}=-2, \forall I \in\{10,11, \ldots \ldots . .33\}$, then median of
$x_{1}, x_{2}, x_{3} \ldots \ldots . x_{34}$ is
A. 134
B. 135
C. 148
D. 150

Answer: B

- Watch Video Solution

19. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are four points which are at unit distance from the lines $3 x-4 y+1=0$ and $8 x+6 y+1=0$, then the value of $\frac{\Sigma_{i=1}^{4} x_{i}}{\Sigma_{i=1}^{4} y_{i}}$ is equal to
A. 2
B. -2
C. 1
D. -1

- Watch Video Solution

20. Let P_{n} be s square matrix of order 3 such that $P_{n}=\left[a_{i j}\right]$, where $a_{i j}=\frac{3 i+j}{4^{n}}$ for $1 \leq i \leq 3,1 \leq j \leq 3$. Then the value of $\lim _{n \rightarrow \infty} T_{r}\left(4 P_{1}+4^{2} P_{2} \ldots \ldots \ldots .4^{n} P_{n}\right)$ is (where $T_{r}(A)$ denotes trace of matrix A i.e sum of principle diagonal elements of A)
A. 7
B. 8
C. $\frac{25}{3}$
D. 9

Answer: B

21. If the length of direct common tangent and transverse common tangent of two circles with integral radii are 3 units and 1 unit respectively, then the reciprocal of the square of the distance between the centres of the circles is equal to

- Watch Video Solution

22. Let $y=f(x)$ satisfies $\frac{d y}{d x}=\frac{x+y}{x}$ and $f(e)=e$ then the value of $f(1)$ is

- Watch Video Solution

23. Let $A=\left[\begin{array}{cc}1 / 2 & 3 / 4 \\ 1 & -1 / 2\end{array}\right]$, then the value of sum of all the elements of A^{100} is

- Watch Video Solution

24. Let $l x-2 y=1$ intersects the parabola $y^{2}=4 a x$ at points P and Q . If $P S$ and QS meet the parabola again at R and T respectively (where S is the focus of $\left.y^{2}=4 a x\right)$ then the slope of RT is equal to

- Watch Video Solution

25. If 2 distinct numbers are between 0 to 180 (both inclusive) and the probability that their average is 60 is k, then $1086 k$ is equal to
