

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 38

Mathematics

1. If m_1,m_2 be the roots of the equation $x^2+ig(\sqrt{3}+2ig)x+\sqrt{3}-1=0$, then the area of the triangle

formed by the lines $y=m_1x, y=m_2x$ and y=2 is

A.
$$\sqrt{33} + \sqrt{11}$$

 $\mathsf{B}.\sqrt{33}-\sqrt{11}$

C. $2\sqrt{33}$

D. $2\sqrt{11}$

Answer: A

Watch Video Solution

2.

$egin{array}{cccc} lpha^{2n} & lpha^{2n+2} & lpha^{2n+4} \ eta^{2n} & eta^{2n+2} & eta^{2n+4} \ \gamma^{2n} & \gamma^{2n+2} & \gamma^{2n+4} \end{array} ert = igg(rac{1}{eta^2} - rac{1}{lpha^2}igg)igg(rac{1}{\gamma^2} - rac{1}{eta^2}igg)igg(rac{1}{lpha^2} - rac{1}{\gamma^2}igg) \end{array}$

If

{where α^2, β^2 and γ^2 are al distinct}, then the value of n is equal to

A. 4

B. - 4

C. 3

 $\mathsf{D}.-2$

Watch Video Solution

3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?

4. The line 2x + y = 3 intersects the ellipse $4x^2 + y^2 = 5$ at two points. The point of intersection of the tangents to the ellipse at these point is

$$\mathsf{A}.\left(\frac{5}{6},\frac{5}{6}\right)$$

$$B.\left(\frac{5}{3},\frac{5}{6}\right)$$
$$C.\left(\frac{5}{6},\frac{5}{3}\right)$$
$$D.\left(\frac{5}{3},\frac{5}{3}\right)$$

Answer: C

5. The fourth term of the arithmetic - geometric progression 6, 8,

8, Is

A. 8

B. 12
C.
$$\frac{32}{3}$$

D. $\frac{64}{9}$

Answer: D

6.

$$0 < A < B < \pi, \sin A - \sin B = rac{1}{\sqrt{2}} ~~ ext{and} ~~ \cos A - \cos B = \sqrt{rac{3}{2}}$$

lf

, then the value of ${\boldsymbol A} + {\boldsymbol B}$ is equal to

A.
$$\frac{2\pi}{3}$$

B. $\frac{5\pi}{6}$
C. π

D.
$$\frac{4\pi}{3}$$

Answer: D

Watch Video Solution

A. f(x) is contunuous and differentiable at x=4

B. f(x) is continuous but non differentiable at x= 4

C. f(x) is discontinuous but differentiable at x=4

D. f(x) is dicountinuous and non differentiable at x = 4

Answer: B

A.
$$\sin y = e^{\frac{1}{x^2}} + c$$

B. $\frac{2\sin y}{x} + e^{\frac{1}{x^2}} = C$
C. $\frac{\sin y}{x} - e^{\frac{1}{x^2}} = C$
D. $\sin y - xe^{\frac{1}{x^2}} = C$

Answer: B

9. Let
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} be three vectors such that
 $\overrightarrow{a} \neq 0, |\overrightarrow{a}| = |\overrightarrow{c}| = 1, |\overrightarrow{b}| = 4$ and $|\overrightarrow{b} \times \overrightarrow{c}| = \sqrt{15}$. If
 $\overrightarrow{b} - 2\overrightarrow{c} = \lambda \overrightarrow{a}$ then find the value of λ .

A. ± 2

 $\mathsf{B.}\pm 1$

C. $\pm 2\sqrt{2}$

 $\mathsf{D}.\pm 4$

Answer: C

10. If two distinct numbers a and be are selected from the set $\{5^1, 5^2, 5^3, \ldots, 5^9\}$, then the probability that $\log_a b$ is an integer is

A.
$$\frac{7}{18}$$

B. $\frac{5}{9}$
C. $\frac{7}{36}$
D. $\frac{3}{16}$

Answer: A

11. If z and w are two non - zero complex numbers such that |zw|=1 and $arg(z)-arg(w)=rac{\pi}{2},$ then the value of $5i\bar{z}w$ is equal to

 $\mathsf{A.}-5$

B. 5i

- C. 5
- D.-5i

Answer: C

12. Let $f\colon R o B$ be a functio defined by $f(x)= an^{-1}.$ $rac{2x}{1+x^2}$

, then f is both one - one and onto when B is in the interval

A.
$$\left(0, \frac{\pi}{4}\right)$$

B. $\left[0, \frac{\pi}{3}\right]$
C. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
D. $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

Answer: C

A. 0

B. 1

C. 2

 $\mathsf{D.}-1$

Answer: C

Watch Video Solution

14.
$$\mathrm{cosec}^2 heta ig(\mathrm{cos}^2 heta - 3\cos heta + 2ig) \geq 1$$
, If $heta$ belongs to

A.
$$\left(0, \frac{\pi}{3}\right)$$

B. $\left(\frac{\pi}{2}, \pi\right)$
C. $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
D. $\left(0, \frac{\pi}{4}\right)$

Answer: C

15. The coefficient of x^2 in the expansion of $(1-x+2x^2)\left(x+rac{1}{x}
ight)^{10}$ is A. 210 B. 714

C. 504

D. 240

Answer: B

Watch Video Solution

16. The value of the integral $I=\int\!\!e^x(\sin x+\cos x)dx$ is equal to $e^x.\ f(x)+C,C$ being the constant of integration. Then the maximum value of $y=f(x^2),\ orall x\in R$ is equal to

A. 0

B. `-1

C. 1

 $\mathsf{D}.\,\frac{1}{2}$

Answer: C

17. The number of local minima/maximum for the function $y=x^2-2\sin x,\ orall x\in \left(0,rac{\pi}{2}
ight)$ is

A. 0

B. 1

C. 2

D. 3

Answer: A

18. Consider
$$A=\int_0^1 rac{dx}{1+x^3}$$
 , then A satisfies

A. $A > rac{\pi}{4}$ B. $A < rac{\pi}{4}$ C. $A = rac{\pi}{4}$ D. $A = rac{\pi}{6}$

Answer: A

Watch Video Solution

19. If $B_0 = egin{bmatrix} -4 & -3 & -3 \ 1 & 0 & 1 \ 4 & 4 & 3 \end{bmatrix}, B_n = adj(B_{n-1}, \ orall n \in N \ ext{and} \ ext{I}$

is an identity matrix of order 3, then $B_1+B_3+B_5+B_7+B_9$ is equal to

A. B_0

B. $5B_0$

C. $25B_0$

D. 5I

Answer: B

20. A plane passes through the point (-2, -2, 2) and contains the line joining the points (1, -1, 2) and (1, 1, 1).

Then the image of $(\,-7,2,3)$ in the plane is

A.
$$(1, -1, 5)$$

B. $(-5, -4, -2)$
C. $(-6, -1, -3)$
D. $\left(\frac{13}{23}, \frac{7}{23}, \frac{6}{23}\right)$

Answer: C

21. If the number of integral solutions (x, y, z) of the equation xyz

= 18 is t, then the value of
$$\frac{t}{8}$$
 is

Watch Video Solution

22. The ratio of the variance of first n positive integral multiples

of 4 to the variance of first n positive odd number is

23. If
$$f: R \to R$$
 is a function satisfying the equation $f(3x + 1) + f(3x + 10) = 10, Aax \in R$, then the period of f(x) is

Watch Video Solution

24. Let (α, β) be an ordered pair of real numbers satisfying the equation $x^2 - 4x + 4y^2 + 3 = 0$. If the maximum and minimum value of $\sqrt{\alpha^2 + \beta^2}$ are I and s respectively, then the value of $\frac{l-s}{l+s}$ is

25. The sum of the real roots of the equation

 $x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$ is

D Watch Video Solution