

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 39

Mathematics

1. If the area bounded by $y=x^2$ and $y=rac{2}{1+x^2}$ is $\left(K_1\pi-rac{K_2}{3}
ight)$ sq. units (where $K_1,K_2\in Z$), then the value of (K_1+K_2) is equal to

A. 3

B. 1

C. -1

 $\mathsf{D.}-2$

Answer: A

2. Let A and B be two sets. The set A has 2016 more subsets than B. If

 $A\cap B$ has 3 members, then the number of members in $A\cup B$ is

A. 10

B. 11

C. 12

D. 13

Answer: D

Watch Video Solution

3. Let $f(x) = \frac{25^x}{25^x + 5}$, then the number of solution (s) of the equation $f(\sin^2 \theta) + f(\cos^2 \theta) = \tan^2 \theta, \theta$ is/are $\in [0, 10\pi]$

A. 10	
B. 2	
C. 40	
D. 20	

Watch Video Solution

 4.
 Let
 $V_1 =$ variance
 of

 $\{13, 16, 19, \dots, 103\}$ and $V_2 =$ variance of
 $\{20, 26, 32, \dots, ...$...

 . Then $V_1 : V_2$ is
 ...
 ...
 ...
 ...

 A. 1: 2
 ...
 ...
 ...
 ...

 B. 1: 1
 ...
 ...
 ...
 ...

 D. 1: 4
 ...
 ...
 ...
 ...

5. The function
$$f(x)=\sin^{-1}ig(2x-x^2ig)+\sqrt{2-rac{1}{|x|}s}+rac{1}{[x^2]}$$

defined in the interval (where [.] is the greatest integer function)

A.
$$x \in \left(1 - \sqrt{2}, 1
ight)$$

B. $x \in \left[1, 1 + \sqrt{2}
ight]$
C. $x \in \left[1 - \sqrt{2}, 1 + \sqrt{2}
ight]$
D. $x \in \left[1 - \sqrt{2}, 2
ight]$

Answer: B

6. If the foot of perpendicular drawn from the point (2, 5, 1) on a line passing through $(\alpha, 2\alpha, 5)$ is $\left(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}\right)$, then α is equal to

A.
$$\frac{19}{9}$$

B. $\frac{11}{570}$
C. $\frac{57}{54}$
D. $\frac{1}{25}$

Watch Video Solution

7. Let the line y = mx and the ellipse $2x^2 + y^2 = 1$ intersect at a point P in the first quadrant. If the normal to this ellipse at P meets the coordinate axes at $\left(-\frac{1}{3\sqrt{2}}, 0\right)$ and $(0, \beta)$, then β is equal to A. $\frac{2\sqrt{2}}{3}$ B. $\frac{2}{\sqrt{3}}$

C.
$$\frac{2}{3}$$

D. $\frac{\sqrt{2}}{3}$

8. Throwing a biased die, a person will get 5 Rupees if the throws the number 5 and will get 8 Rupees for any other number, then the expected income (in Rupees) per throw is (it is given that the number 5 will appear 5 times as frequently as any other number)

A. 6.5

B. 7

C. 5

D. 5.5

Answer: A

9. The sum of four numbers in arithmetical progression is 48 and the product of the extremes to the product of the means as 27 to 35 Find the numbers

A.	10
B.	12
C.	14
D.	18

Answer: D

Watch Video Solution

10. The solution of the differential equation
$$\frac{dy}{dx} = \frac{y\cos x - y^2}{\sin x}$$
 is equal

to (where c is an arbitrary constant)

A. $\sin x = x - y + c$

 $\mathsf{B.}\sin x = x + y + c$

$$\mathsf{C.}\sin x = xy + cy$$

D.
$$\frac{\sin x}{x} = y + c$$

Answer: C

11. If
$$|a|<1$$
 and $|b|<1$, then the sum of the series $a(a+b)+a^2ig(a^2+b^2ig)+a^3ig(a^3+b^3ig)+\dots\infty$ is

A.
$$\frac{a}{1-a} + \frac{ab}{1-ab}$$

B. $\frac{a^2}{1-a^2} + \frac{ab}{1-ab}$
C. $\frac{b}{1-b} + \frac{a}{1-a}$
D. $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$

Answer: B

12. The angle of elevation of a cloud from a point 10 meters above the surface of a lake is 30° and the angle of depression of its reflection from that point is 60° . Then the height of the could above the lake is

A. 20 meters

B. $20\sqrt{3}$ meters C. $\frac{20\left(\sqrt{3}-1
ight)}{\sqrt{3}}$ meters D. $20(\sqrt{3}-1)$ meters

Answer: A

Watch Video Solution

13.

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n, \Sigma_{r=0}^n \Bigl((r+1)^2 \Bigr) C_r = 2^{n-2} f(r+1)^n$$

If

and if the roots of the equation f(x) = 0 are lpha and eta, then the value of $lpha^2+eta^2$ is equal to (where C_r denotes .ⁿ C_r)

A.	13

B. 10

C. 17

D. 20

Answer: C

Watch Video Solution

14. If
$$I = \int \frac{\tan^{-1}(e^x)}{e^x + e^{-x}} dx = \frac{\left[\tan^{-1}(f(x))\right]^2}{2} + C$$
 (where C is the

constant of integration), then the range of y=f(x) $orall x\in R$ is

A. $(-\infty,\infty)$

 $\mathsf{B}.\left[0,\infty
ight)$

 $\mathsf{C}.\left(o,\infty
ight)$

D. $(-\infty,0)$

Answer: C

15.

For

$$x > 0.$$
 let $A = \begin{bmatrix} x + \frac{1}{x} & 0 & 0 \\ 0 & 1/x & 0 \\ 0 & 0 & 12 \end{bmatrix}, B = \begin{bmatrix} \left(\frac{x}{6(x^2 + 1)}, 0, 0\right), \left(0, \frac{x}{4}, 0, 0\right) \end{bmatrix}$
be two matrices and $C = AB + (AB)^2 + \dots + (AB)^n$. Then,
 $Tr\left(\lim_{n \to \infty} C\right)$ is equal to (where $Tr(A)$ is the trace of the matrix A i.e.
the sum of the principle diagonal elements of A)

A. 1

B.
$$\frac{31}{30}$$

C. $\frac{6}{5}$
D. $\frac{1}{3}$

Answer: B

16. The perpendicular bisector of a line segment with end points (1, 2, 6) and (-3, 6, 2) passes through (-6, 2, 4) and has the equation of the form $\frac{x+6}{l} = \frac{y-2}{m} = \frac{z-4}{n}$ (where l > 0), then the value of lmn - (l+m+n) equals to

- A.-3
- B.-5
- C. -7
- D. 9

Answer: C

Watch Video Solution

17. Consider the family of lines $5x + 3y - 2 + \lambda(3x - y - 4) = 0$ and $x - y + 1 + \mu(2x - y - 2) = 0$. The equation of a straight line that belonges to both the families is

A.
$$5x - 2y - 7 = 0$$

B. $3x + y - 2 = 0$
C. $5x + 2y - 3 = 0$
D. $2x + y - 1 = 0$

Answer: A

Watch Video Solution

18. If A, B are two non - singular matrices of order 3 and I is an identity matrix of order 3 such that $AA^T = 5I$ and $3A^- = 2A^T - Aadj(4B)$, then $|B|^2$ is equal to (where A^T and adj(A) denote transpose and adjoint matrices of the matrix A respectively)

A.
$$\frac{7^3}{5^3.4^6}$$

B. $\frac{7^3}{5^3.4^4}$
C. $\frac{7^4}{5^3.2^{12}}$
D. $\frac{5^6}{7^3.2^{10}}$

Answer: A

19. If
$$A_n=\int_0^{n\pi}|{\sin x}|dx,~orall n\in N,$$
 then $\Sigma_{r=1}^{10}A_r$ is equal to A. 100
B. 110

C. 55

D. 105

Answer: B

20. The perimeter of the locus of the point at which the two circules $x^2 + y^2 = 1$ and $\left(x - 4\right)^2 + y^2 = 4$ subtend equal angles is

A.
$$\left(\frac{4}{3}\right)\pi$$

B. $\left(\frac{8}{3}\right)\pi$
C. $\left(\frac{2}{3}\right)\pi$
D. $\left(\frac{16}{3}\right)\pi$

21. The difference between the maximum and minimum values of the function $f(x)=x^3-3x+4, \ orall x\in\{0,1]$ is

Watch Video Solution

22. Given $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are 3 vectors such that $\overrightarrow{b}, \overrightarrow{c}$ are parallel unit vectors and $|\overrightarrow{a}| = 3$. If $\overrightarrow{a} + \lambda \overrightarrow{c} = 4 \overrightarrow{b}$, then the sum of all the possible positive values of λ is

23. Let f(x) is a differentiable function on $x \in R$, such that f(x+y)=f(x)f(y) for all $x,y\in R$ where f(0)
eq 0. If $f(5)=10,\,f'(0)=0$, then the value of f'(5) is equal to

Watch Video Solution

24. If x and y are the solutions of the equation $12\sin x+5\cos x=2y^2-8y+21$, then the value of $12\cot\left(rac{xy}{2}
ight)$ is (Given, $|x|<\pi$)

Watch Video Solution

25. The value of
$$ig(\Sigma_{k=1}^4ig)ig(ext{sin.}~rac{2\pi k}{5}-i\cos.~rac{2\pi k}{5}ig)^4$$
 is (where i is iota)