©゙doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 44

Mathematics

1. If α, β and γ are the roots of the equation $x^{3}+x+2=0$, then the equation whose roots are $(\alpha-\beta)(\alpha-\gamma),(\beta-\gamma)(\beta-\gamma)$ and $(\gamma-\alpha)(\gamma-\alpha)$ is
A. $x^{3}-6 x^{2}+216=0$
B. $x^{3}-3 x^{2}+112=0$
C. $x^{3}+6 x^{2}-216=0$
D. $x^{3}+3 x^{2}-112=0$

Answer: D

- Watch Video Solution

2. (A) Number of values of a for which the common chord of the circles $x^{2}+y^{2}=8$ and $(x-a)^{2}+y^{2}=8$ subtends a right angle at the origin is
A. 0
B. 2
C. 5
D. 3

D Watch Video Solution

3. If λ is the remainder when 2^{2021} is divided by 17 , then the value of λ must be equal to
A. 3
B. 7
C. 13
D. 15

Answer: D

4. Number of ways in which 5 boys and 4 girls can be arranged on a circular table such that no two girls sit together and two particular boys are always together: (A) 276 (B) 288 (C) 296 (D) 304
A. 288
B. 44
C. 720
D. 540

Answer: A

- Watch Video Solution

5. Let $f(n, x)=\int n \cos (n x) d x$, with $f(n, 0)=0$. If the expression $\Sigma_{x=1}^{89} f(1, x)$ simplifies to $\frac{\sin a \sin b}{\sin c}$, then the value of $\frac{b}{a c}$ is (where $a>b$)
A. 45
B. 89
C. $\frac{89}{45}$
D. $\frac{45}{89}$

Answer: C

- Watch Video Solution

6. Consider $A=\int_{0}^{\frac{\pi}{4}} \frac{\sin (2 x)}{x} d x$, then
A. $A>\frac{\pi}{2}$
B. $A=\frac{\pi}{2}$
C. $A<\frac{\pi}{2}$
D. $A>\pi$

Answer: C

D Watch Video Solution

7. The locus of the mid - points of the chords of the hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ which are parallel to the line $y=2 x+4$ is
A. $3 x-2 y=4$
B. $4 x-4 y=3$
C. $3 y-4 x+4=0$
D. $3 x-4 y=2$

Answer: A

- Watch Video Solution

8. The difference between the maximum and minimum
values
of the function
$f(x)=\sin ^{3} x-3 \sin x, \forall x \in\left[0, \frac{\pi}{6}\right]$ is
A. 2
B. $\frac{1}{2}$
C. $\frac{11}{8}$
D. $\frac{7}{6}$

Answer: C

D Watch Video Solution

9. The solution of the differential equation $\frac{d y}{d x}=\frac{x-y}{x+4 y}$ is (where C is the constant of integration)
A. $x y+y^{2}=x+C$
B. $x y-y^{2}=x^{2}+C$
C. $x y+2 y^{2}=x^{2}+C$
D. $2 x y+4 y^{2}=x^{2}+C$

Answer: D
10. The value of $\lim _{x \rightarrow 0} \frac{1-\cos ^{3}(\sin x)}{\sin x \sin (\sin x) \cos (\sin x)}$
A. $\frac{3}{2}$
B. 1
C. 0
D. 2

Answer: A

- Watch Video Solution

11. Let the normals at points $A(4 a,-4 a)$ and $B(9 a,-6 a)$ on the parabola $y^{2}=4 a x$ meet at the point

P . The equation of the nornal from P on $y^{2}=4 a x$ (other than $P A$ and $P B)$ is
A. $5 x+y-135 a=0$
B. $5 x-y+115 a=0$
C. $5 x+y+115=0$
D. $5 x-y-115 a=0$

Answer: A

- Watch Video Solution

12. The number of real solution(s) of the equation

$$
\sin ^{-1} \sqrt{x^{2}-5 x+5}+\cos ^{-1} \sqrt{4 x-x^{2}-3}=\pi \text { is/are }
$$

B. two
C. zero
D. infinite

Answer: A

- Watch Video Solution

13. $A B C$ is an acute angled triangle with circumcenter O and orthocentre H . If $\mathrm{AO}=\mathrm{AH}$, then find the angle A .
A. 30°
B. 60°
C. 75°
D. 90°

Answer: B

- Watch Video Solution

14. Consider a skew - symmetric matrix $A=\left[\begin{array}{cc}a & b \\ -b & c\end{array}\right]$ such that a, b and c are selected from the set $S=\{0,1,2,3, \ldots \ldots \ldots .12\}$. If $|A|$ is divisible by 3 , then the number of such possible matrices is
A. 4
B. 5
C. 6
D. 12

Answer: B

D Watch Video Solution

15. Let $A=\left|a_{i j}\right|$ be a 3×3 matrix where
$a_{i j}=\left\{\begin{array}{ll}\left(i^{j}-j^{i}+2 i j\right) x & i<j \\ 1 & i>j, \\ 0 & i=j\end{array}\right.$ then the minimum
value of $|A|$ is equal to (where x is a real number)
A. $\frac{1}{4}$
B. $-\frac{8}{33}$
C. 7
D. $-\frac{4}{33}$

- Watch Video Solution

16. Consider on experiment of a single throw of a pair of unbiased normal dice. Let three events $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} are defined as follows ε_{1} : getting prime numbered face on each dice
ε_{2} : getting the same number on each dice
ε_{3} : getting the sum of 4 on two dice which of the following is not true?
A. The probabilities $P\left(\varepsilon_{1}\right), P\left(\varepsilon_{2}\right), P\left(\varepsilon_{3}\right)$ are arithmetic progression.
B. The events εg_{1} and ε_{2} are dependent
C. $P\left(\frac{\varepsilon_{3}}{\varepsilon_{1}}\right)=\frac{2}{9}$
D. $P\left(\frac{\varepsilon_{3}}{\varepsilon_{1}}\right)=\frac{1}{9}$

Answer: C

- Watch Video Solution

17. Which of the following statements is false when p is true and q is false?
A. $(p \Rightarrow q) \Leftrightarrow r$
B. $(\Leftrightarrow q) \Rightarrow r$
C. $(q \Rightarrow r) \Rightarrow p$
D. $(r \Rightarrow p) \Rightarrow q$

- Watch Video Solution

18. For a comple number Z, if $|Z-1+i|+|Z+i|=1$, then the range of the principle argument of Z is (where principle $\arg (Z) \in(-\pi, \pi])$
A. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
B. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
C. $\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$
D. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Answer: C

19. Let $f: A \rightarrow B$ is a function defined by $f(x)=\frac{2 x}{1+x^{2}}$. If the function $f(x)$ is a bijective function, than the correct statement can be

$$
\begin{aligned}
& \text { A. } A=B=[-1,1] \\
& \text { B. } A=B=[-2,2] \\
& \text { C. } A=[-1,1], B=[-2,2] \\
& \text { D. } A=[-2,2], B=[-1,1]
\end{aligned}
$$

Answer: A

D Watch Video Solution

20. Two data sets each of size 10 has the variance as 4 and k and the corresponding means as 2 and 4 respectively. If
the variance of the combined data set is 5.5 , then the value of k is equal to
A. 5
B. 6
C. 4
D. 3

Answer: A

- Watch Video Solution

21.

$S=1(25)+2(24)+3(23)+\ldots \ldots \ldots \ldots . .+24(2)+25(1)$
then the value of $\frac{S}{900}$ is equal to

D Watch Video Solution

22. The area (in sq. units) bounded by the curve $f(x)=\max (|x|-1,1-|x|)$ with the x - axis from $x=-1$ to $x=1$ is

- Watch Video Solution

23. Let $f(x)=\tan ^{-1}\left(\frac{x^{3}-1}{x^{2}+x}\right)$, then the value of $17 f^{\prime}(2)$ is equal to
24. Let $P(1,2,3)$ be a point in space and Q be a point on the line $\frac{x-1}{2}=\frac{y-3}{5}=\frac{z-1}{3}$ such that PQ is parallel to $5 x-4 y+3 z=1$. If the length of PQ is equal to k units, then the value of k^{2} is equal to

- Watch Video Solution

25. Let the lengths of the altitudes from the vertices $A(-1,1), B(5,2), C(3,-1)$ of $\triangle A B C$ are p_{1}, p_{2}, p_{3}
units respectively then the value of $\frac{\left(\frac{1}{p_{1}}\right)^{2}+\left(\frac{1}{p_{3}}\right)^{2}}{\left(\frac{1}{p_{2}}\right)^{2}}$ is equal to
