

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 45

Mathematics

1. If the inequality $x^2 + ax + a^2 + 6a < 0$ is satisfied for all x in (1, 2), then the sum of all the integral values of a must be equal to

- A. 10
- B. 15
- $\mathsf{C}.-21$
- D. 28

Answer: C

3. If the sum of the root of the equation $\cos 4x + 6 + 7\cos 2x$ in the interval [0,314] is $k\pi, k \in R$ Find (k-4948)

A. 4950

B. 2475

C. 9900

D. 4945

Answer: A

Watch Video Solution

4. If A(0, 0), $B(\theta, \cos \theta)$ and $C(\sin^3 \theta, 0)$ are the vertices of a triangle Abc, then the value of θ for which the triangle has the maximum area is $\left(\text{where } \theta \in \left(0, \frac{\pi}{2}\right)\right)$ A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{2}$

Answer: C

5. The value of
$$\int_0^{\frac{\pi}{3}} \log(1+\sqrt{3}\tan x) dx$$
 is equal to
A. $\pi \log 2$
B. $\frac{\pi}{2} \log 2$
C. $\frac{\pi}{3} \log 2$
D. $\frac{\pi}{4} \log 2$

Answer: C

Watch Video Solution

6. The area (in sq. units) enclosed between the curve $x=rac{1-t^2}{1+t^2}, y=rac{2t}{1+t^2}, orall t\in R$ and the line y=x+1 above the line is

A.
$$\frac{\pi}{4}$$

B. $\frac{1}{2}$

$$\mathsf{C}.\,\frac{3\pi}{4}+\frac{1}{2}$$
$$\mathsf{D}.\,\frac{\pi}{4}-\frac{1}{2}$$

Answer: D

7. The solution of the differential equation

$$yig(2x^4+yig)rac{dy}{dx}=ig(1-4xy^2ig)x^2$$
 is given by

A.
$$3x^2y+x^3-y^3=C$$

7

B.
$$3x^4y^2 + y^3 - x^3 = C$$

C.
$$3x^2y^4+x^3-y^3=C$$

D.
$$3x^2y^3 - x^3 = C$$

Answer: B

8. R o R be defined by $f(x) = rac{\left(e^{2x} - e^{-2x}
ight)}{2}.$ is f(x) invertible. If yes then find $f^{-1}(x)$

A. f is many - one

B. f is into

$${\sf C.} \ f^{-1}(x) = rac{1}{2} \Big[\log \Bigl(x - \sqrt{x^2 + 1} \Bigr) \Big]$$
 ${\sf D.} \ f^{-1}(x) = rac{1}{2} \Big[\log \Bigl(x + \sqrt{x^2 + 1} \Bigr) \Big]$

Answer: D

Watch Video Solution

9. The value of $\lim_{x o 1} rac{x an\{x\}}{x-1}$ is equal to (where $\{x\}$ denotes the fractional part of x)

A. - 1

B. 0

C. 1

D. Does not exist

Answer: D

Watch Video Solution

10. If the lines
$$\frac{x-1}{1} = \frac{y-3}{1} = \frac{z-2}{\lambda}$$
 and $\frac{x-1}{\lambda} = \frac{y-3}{2} = \frac{z-4}{1}$
intersect at a point, then the value of $\lambda^2 + 4$ is equal to
A. 8
B. 10
C. 13
D. 5

Answer: A

11. Let A and B are square matrices of order 2 such that $A + adj(B^T) = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ and $A^T - adj(B) = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix}$, then $A^2 + 2A^3 + 3A^4 + 5A^5$ is equal to (where M^T and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)

A. 4A

B. 7A

C. 11A

D. 10I

Answer: C

12. A bag contains 40 tickets numbered from 1 to 40. Two tickets are drawn from the bag without replacement. The probability that the 2^{nd} ticket is a perfect square given that the 1^{st} ticket was a perfect square is

A.
$$\frac{1}{6}$$

B. $\frac{5}{39}$
C. $\frac{3}{20}$
D. $\frac{1}{8}$

Answer: B

13. Let A and B be two square matrices of order 3 such that |A| = 3 and |B| = 2, then the value of $|A^{-1}. adj(B^{-1}). adj(2A^{-1})|$ is equal to (where adj(M) represents the adjoint matrix of M)

A. 72

B. $\frac{64}{27}$ C. $\frac{8}{9}$ D. $\frac{16}{27}$

Answer: D

14. Point P(-1, 7) lies on the line 4x + 3y = 17. Then the coordinates of the points farthest from the line which are at a distance of 10 units from the point P are

A. (7, 13) and (-9, 1)

- B. (5, 15) and (-1, -7)
- C.(-1,5) and (15, -7)
- D. (15, 5) and (-7, -1)

Answer: A

15. From the point A(0, 3) on the circle $x^2 + 9x + (y - 3)^2 = 0$, a chord AB is drawn and extended to a point M such that AM = 2AB (B lies between A & M). The locus of the point M is

A.
$$x^2 + 18x + y^2 = 0$$

B. $x^2 + 18x + (y - 3)^2 = 0$
C. $(x - 3)^2 + 18x + y^2 = 0$
D. $x^2 + 8x + 18 - y^2 = 0$

Answer: B

Watch Video Solution

16. OA is the chord of the parabola $y^2 = 4x$ and perpendicular to OA which cuts the axis of the parabola at C. If the foot of A on the axis of the parabola is D, then the length CD is equal to

B. 3 units

C. 4 units

D. 6 units

Answer: C

Watch Video Solution

17. If A(2+3i) and B(3+4i) are two vertices of a square ABCD (taken in anticlockwise order)in a complex plane, then the value of $|Z_3|^2 - |Z_4|^2$ (Where C is Z_3 and D is Z_4) is equal to

A. 0

B. 6

C. 8

D. 12

Answer: D

18. Two poles of height 10 meters and 20 meters stand at the centres of two circular plots which touch each other externally at a point and the two poles subtend angles 30° and 60° respectively at this point, then the distance between the centres of these circular plots is

A. 30 meters

B.
$$\frac{50}{\sqrt{3}}$$
 meters
C. $\frac{70}{\sqrt{3}}$ meters
D. $(10\sqrt{3} + 20)$ meters

Answer: B

19. If in a class there are 200 students in which 120 take Mathematics, 90

take Physics, 60 take Chemistry, 50 take Mathematics & Physics, 50 take

Mathematics & Chemistry, 43 take Physics & Chemistry and 38 take Mathematics Physics & Chemistry, then the number of students who hace taken exactly one subject is

A. 42

B. 56

C. 270

D. 98

Answer: D

Watch Video Solution

20. If the variance of first n even natural numbers is 133, then the value of

n is equal to

A. 19

B. 24

C. 21

Answer: D

Watch Video Solution

21. The arithmetic mean of two positive numbers a and b exceeds their geometric mean by $\frac{3}{2}$ and the geometric mean exceeds their harmonic mean by $\frac{6}{5}$. If $a + b = \alpha$ and $|a - b| = \beta$, then the value of $\frac{10\beta}{\alpha}$ is equal to

Watch Video Solution

22. If P and Q are points with eccentric angles θ and $\left(\theta + \frac{\pi}{6}\right)$ on the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$, then the area (in sq. units) of the triangle OPQ (where O is the origin) is equal to

23. If
$$\overrightarrow{x}$$
 and \overrightarrow{y} are two non zero, non - collinear vectors satisfying
 $((a-3)\alpha^2 + (b-4)\alpha + (c-1))\overrightarrow{x} + [(a-3)\beta^2 + (b-4)\beta + (c-1)]\overrightarrow{q}$
(where α, β, γ are three distinct numbers), then the value of $\frac{a^2 + b^2 + c^2}{4}$ is equal to

Watch Video Solution

24.
$$\int \frac{(\cos x)^4}{(\sin x)^3 \left((\sin x)^5 + (\cos x)^5\right)^{\frac{3}{5}}} dx$$

Watch Video Solution

25. If
$$f(x) = \begin{cases} rac{e^{\left(1+rac{1}{x}
ight)}-a}{e^{rac{1}{x}}+1} & : \ x
eq 0 \\ b & : \ x = 0 \end{cases}$$
 (where a and b are arbitrary

constants) is continuous at x = 0, then the value of a^2 is equal to

(use e = 2.7)