©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 45

Mathematics

1. If the inequality $x^{2}+a x+a^{2}+6 a<0$ is satisfied for all x in (1, 2), then the sum of all the integral values of a must be equal to
A. -10
B. -15
C. -21
D. -28
2. The number of integral terms in the expansion of $\left(5^{\frac{1}{6}}+7^{\frac{1}{9}}\right)^{1824}$ is
A. 84
B. 96
C. 91
D. 102

Answer: D

- Watch Video Solution

3. If the sum of the root of the equation $\cos 4 x+6+7 \cos 2 x$ in the interval $[0,314]$ is $k \pi, k \in R$ Find (k -4948)
A. 4950
B. 2475
C. 9900
D. 4945

Answer: A

- Watch Video Solution

4. If $A(0,0), B(\theta, \cos \theta)$ and $C\left(\sin ^{3} \theta, 0\right)$ are the vertices of a triangle Abc , then the value of θ for which the triangle has the maximum area is $\left(\right.$ where $\theta \in\left(0, \frac{\pi}{2}\right)$)
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

5. The value of $\int_{0}^{\frac{\pi}{3}} \log (1+\sqrt{3} \tan x) d x$ is equal to
A. $\pi \log 2$
B. $\frac{\pi}{2} \log 2$
C. $\frac{\pi}{3} \log 2$
D. $\frac{\pi}{4} \log 2$

Answer: C

- Watch Video Solution

6. The area (in sq. units) enclosed between the curve $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}, \forall t \in R$ and the line $y=x+1$ above the line is
A. $\frac{\pi}{4}$
B. $\frac{1}{2}$
C. $\frac{3 \pi}{4}+\frac{1}{2}$
D. $\frac{\pi}{4}-\frac{1}{2}$

Answer: D

- Watch Video Solution

7. The solution of the differential equation
$y\left(2 x^{4}+y\right) \frac{d y}{d x}=\left(1-4 x y^{2}\right) x^{2}$ is given by
A. $3 x^{2} y+x^{3}-y^{3}=C$
B. $3 x^{4} y^{2}+y^{3}-x^{3}=C$
C. $3 x^{2} y^{4}+x^{3}-y^{3}=C$
D. $3 x^{2} y^{3}-x^{3}=C$

Answer: B

- Watch Video Solution

8. $R \rightarrow R$ be defined by $f(x)=\frac{\left(e^{2 x}-e^{-2 x}\right)}{2}$. is $f(x)$ invertible. If yes then find $f^{-1}(x)$
A. f is many - one
B. f is into
C. $f^{-1}(x)=\frac{1}{2}\left[\log \left(x-\sqrt{x^{2}+1}\right)\right]$
D. $f^{-1}(x)=\frac{1}{2}\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]$

Answer: D

- Watch Video Solution

9. The value of $\lim _{x \rightarrow 1} \frac{x \tan \{x\}}{x-1}$ is equal to (where $\{x\}$ denotes the fractional part of x)
A. -1
B. 0
C. 1
D. Does not exist

Answer: D

- Watch Video Solution

10. If the lines $\frac{x-1}{1}=\frac{y-3}{1}=\frac{z-2}{\lambda}$ and $\frac{x-1}{\lambda}=\frac{y-3}{2}=\frac{z-4}{1}$ intersect at a point, then the value of $\lambda^{2}+4$ is equal to
A. 8
B. 10
C. 13
D. 5

Answer: A

- Watch Video Solution

11. Let A and B are square matrices of order 2 such that $A+\operatorname{adj}\left(B^{T}\right)=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ and $A^{T}-\operatorname{adj}(B)=\left[\begin{array}{ll}-2 & -1 \\ -1 & -1\end{array}\right], \quad$ then $A^{2}+2 A^{3}+3 A^{4}+5 A^{5}$ is equal to (where M^{T} and $\operatorname{adj}(M)$ represent the transpose matrix and adjoint matrix of matrix M respectively and । represents the identity matrix of order 2)
A. 4 A
B. 7A
C. 11 A
D. 101

Answer: C

D Watch Video Solution

12. A bag contains 40 tickets numbered from 1 to 40 . Two tickets are drawn from the bag without replacement. The probability that the $2^{\text {nd }}$ ticket is a perfect square given that the $1^{\text {st }}$ ticket was a perfect square is
A. $\frac{1}{6}$
B. $\frac{5}{39}$
C. $\frac{3}{20}$
D. $\frac{1}{8}$

Answer: B

- Watch Video Solution

13. Let A and B be two square matrices of order 3 such that $|A|=3$ and $|B|=2$, then the value of
$\left|A^{-1} \cdot \operatorname{adj}\left(B^{-1}\right) \cdot a d j\left(2 A^{-1}\right)\right|$ is equal to (where $\operatorname{adj}(\mathrm{M})$ represents the adjoint matrix of M)
A. 72
B. $\frac{64}{27}$
C. $\frac{8}{9}$
D. $\frac{16}{27}$

- Watch Video Solution

14. Point $P(-1,7)$ lies on the line $4 x+3 y=17$. Then the coordinates of the points farthest from the line which are at a distance of 10 units from the point P are
A. $(7,13)$ and $(-9,1)$
B. $(5,15)$ and ($-1,-7)$
C. $(-1,5)$ and $(15,-7)$
D. $(15,5)$ and $(-7,-1)$

Answer: A

15. From the point $\mathrm{A}(0,3)$ on the circle $x^{2}+9 x+(y-3)^{2}=0$, a chord $A B$ is drawn and extended to a point M such that $A M=2 A B$ (B lies between $A \& M)$. The locus of the point M is
A. $x^{2}+18 x+y^{2}=0$
B. $x^{2}+18 x+(y-3)^{2}=0$
C. $(x-3)^{2}+18 x+y^{2}=0$
D. $x^{2}+8 x+18-y^{2}=0$

Answer: B

- Watch Video Solution

16. OA is the chord of the parabola $y^{2}=4 x$ and perpendicular to OA which cuts the axis of the parabola at C. If the foot of A on the axis of the parabola is D, then the length $C D$ is equal to
A. 2 units
B. 3 units
C. 4 units
D. 6 units

Answer: C

- Watch Video Solution

17. If $A(2+3 i)$ and $B(3+4 i)$ are two vertices of a square $A B C D$ (taken in anticlockwise order)in a complex plane, then the value of $\left|Z_{3}\right|^{2}-\left|Z_{4}\right|^{2}$ (Where C is Z_{3} and D is Z_{4}) is equal to
A. 0
B. 6
C. 8
D. 12

Answer: D

18. Two poles of height 10 meters and 20 meters stand at the centres of two circular plots which touch each other externally at a point and the two poles subtend angles 30° and 60° respectively at this point, then the distance between the centres of these circular plots is
A. 30 meters
B. $\frac{50}{\sqrt{3}}$ meters
C. $\frac{70}{\sqrt{3}}$ meters
D. $(10 \sqrt{3}+20)$ meters

Answer: B

- Watch Video Solution

19. If in a class there are 200 students in which 120 take Mathematics, 90 take Physics, 60 take Chemistry, 50 take Mathematics \& Physics, 50 take

Mathematics \& Chemistry, 43 take Physics \& Chemistry and 38 take Mathematics Physics \& Chemistry, then the number of students who hace taken exactly one subject is
A. 42
B. 56
C. 270
D. 98

Answer: D

- Watch Video Solution

20. If the variance of first n even natural numbers is 133 , then the value of n is equal to
A. 19
B. 24
C. 21
D. 20

Answer: D

- Watch Video Solution

21. The arithmetic mean of two positive numbers a and b exceeds their geometric mean by $\frac{3}{2}$ and the geometric mean exceeds their harmonic mean by $\frac{6}{5}$. If $a+b=\alpha$ and $|a-b|=\beta$, then the value of $\frac{10 \beta}{\alpha}$ is equal to

- Watch Video Solution

22. If P and Q are points with eccentric angles θ and $\left(\theta+\frac{\pi}{6}\right)$ on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$, then the area (in sq. units) of the triangle OPQ (where O is the origin) is equal to

- Watch Video Solution

23. If \vec{x} and \vec{y} are two non zero, non - collinear vectors satisfying

$$
\left((a-3) \alpha^{2}+(b-4) \alpha+(c-1)\right) \vec{x}+\left[(a-3) \beta^{2}+(b-4) \beta+(c-1)\right] \bar{y}
$$

(where α, β, γ are three distinct numbers), then the value of $\frac{a^{2}+b^{2}+c^{2}}{4}$ is equal to

- Watch Video Solution

24. $\int \frac{(\cos x)^{4}}{(\sin x)^{3}\left((\sin x)^{5}+(\cos x)^{5}\right)^{\frac{3}{5}}} d x$

- Watch Video Solution

25. If $f(x)=\left\{\begin{array}{ll}\frac{e^{\left(1+\frac{1}{x}\right)}-a}{e^{\frac{1}{x}}+1} & : x \neq 0 \\ b & : x=0\end{array}\right.$ (where a and b are arbitrary
constants) is continuous at $x=0$, then the value of a^{2} is equal to (use e = 2.7)

- Watch Video Solution

