© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 47

Mathematics

1. If $A=\left[\begin{array}{ll}3 & -2 \\ 7 & -5\end{array}\right]$, then the value of $\left|-3 A^{2019}+A^{2020}\right|$ is equal to
A. -14
B. 28
C. 14
D. $2^{2019} \cdot 14$

Answer: A
2. Let \vec{a} be a vector in the xy - plane making an angle of 60° with the positive x - axis and $|\vec{a}-\hat{i}|$ is the geometric mean of $|\vec{a}|$ and $|\vec{a}-2 \hat{i}|$, then the value of $|\vec{a}|$ is equal to
A. $\sqrt{2}$
B. $\sqrt{2}+1$
C. $\sqrt{2}-1$
D. 2

Answer: C

- Watch Video Solution

3. If three normals are drawn from the point ($c, 0$) to the parabola $y^{2}=4 x$ and two of which are perpendicular, then the value of c is equal to
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

4. If the number of ways of selecting 3 numbers out of $1,2,3, \ldots \ldots, 2 n+1$ such that they are in arithmetic progression is 441 , then the sum of the divisors of n is equal to
A. 21
B. 32
C. 45
D. 60

- Watch Video Solution

5. If $\cos 5 \theta=5 \cos \theta-2 \theta \cos ^{3} \theta+a \cos ^{5} \theta+b$, then the value of $a+b$ is equal to
A. 20
B. 16
C. -16
D. 15

Answer: B

- Watch Video Solution

6. If $x=\sin \left(2 \tan ^{-1} 3\right)$ and $y=\sin \left(\frac{1}{2} \tan ^{-1}\left(\frac{4}{3}\right)\right)$, then
A. $2 x=1-y$
B. $x^{2}=1-2 y$
C. $x^{2}=1+y$
D. $y^{2}=2 x-1$

Answer: D

- Watch Video Solution

7. A tower subtends an angle of 60° at a point on the same level as the foot of the tower and at a second point just 10 meters above the first point the angle of depression of the foot of the tower is 15°. The height of the tower is (in meters)
A. $\frac{10}{\sqrt{3}}(2-\sqrt{3})$
B. $10 \sqrt{3}(2-\sqrt{3})$
C. $\frac{10}{\sqrt{3}}(2+\sqrt{3})$
D. $10 \sqrt{3}(2+\sqrt{3})$

D Watch Video Solution

8. The function $f:(-\infty, 1] \rightarrow\left(0, e^{5}\right]$ defined as $f(x)=e^{x^{3}+2}$ is
A. Many one and onto
B. Many one and into
C. one - one and onto
D. one - one and into

Answer: B

- Watch Video Solution

9. The function $f(x)=\lim _{n \rightarrow \infty} \frac{(x-2)^{2 n}-1}{(x-2)^{2 n}+1}(\forall n \in N) \quad$ is discontinuous at
A. $x=1$ only
B. $x=3$ only
C. $x=1$ and 3
D. $x=0,1$ and 2

Answer: C

- Watch Video Solution

10. If a and b are positive integers such that $N=(a+i b)^{3}-107 i$ (where N is a natural number), then the value of a is equal to (where $i^{2}=-1$)
A. 4
B. 5
C. 6
D. 9

Answer: C

D Watch Video Solution

11. The area (in sq. units) bounded by the curve $y=\{(x .:, x \in[0,1]),(2-x,:, \xi n[1,2])$ with the x - axis from $\mathrm{x}=0$ to $x=2$ is
A. 2
B. $\frac{1}{2}$
C. 1
D. 4

Answer: C

12. Let a variable line passing through a fixed point P in the first quadrant cuts the positive coordinate axes at points A and B respectively. If the area of $\triangle O A B$ is minimum, then OP is
A. Altitude through vertex O of $\triangle A O B$
B. Median through vertex O of $\triangle A O B$
C. Internal angle bisector through vertex O of $\triangle A O B$
D. None of these

Answer: B

- Watch Video Solution

13. A differentiable function $\mathrm{f}(\mathrm{x})$ satisfies $f(0)=0$ and $f(1)=\sin 1$, then (where f^{\prime} represents derivative of f)
A. $f^{\prime}(c)=\cos c, \forall c \in[0,1]$
B. $f^{\prime}(c)=\cos c$ for some $\in[0,1]$
C. $f^{\prime}(c)=-\cos c, \forall c \in[0,1]$
D. $f^{\prime}(c)=2 \cos c, \forall c \in[0,1]$

Answer: B

- Watch Video Solution

14. If $I=\int \frac{d x}{x^{3}\left(x^{8}+1\right)^{3 / 4}}=\frac{\lambda\left(1+x^{8}\right)^{\frac{1}{4}}}{x^{2}}+c$ (where c is the constant of integration), then the value of λ is equal to
A. 2
B. $\frac{1}{2}$
C. -2
D. $-\frac{1}{2}$

Answer: D

15. The order of the differential equation of the family of parabolas symmetric about $y=1$ and tangent to $\mathrm{x}=2$ is
A. 2
B. 1
C. 3
D. 4

Answer: B

- Watch Video Solution

16. The harmonic mean of two positive numbers a and b is 4 , their arithmetic mean is A and the geometric mean is G. If $2 A+G^{2}=27, a+b=\alpha$ and $|a-b|=\beta$, then the value of $\frac{\alpha}{\beta}$ is equal to
A. 1
B. 3
C. $\frac{5}{2}$
D. 5

Answer: B

D Watch Video Solution

17. The shortest distance between the lines
$\frac{x-2}{2}=\frac{y-3}{2}=\frac{z-0}{1}$ and $\frac{x+4}{-1}=\frac{y-7}{8}=\frac{z-5}{4}$ lies in the interval
A. $[0,1)$
B. $[1,2)$
C. $(2,3]$
D. $(3,4]$

Answer: C

18.

$x^{2 a} y^{3 b}=e^{5 m}, x^{3 c} y^{4 d}=e^{2 n}, \Delta_{1}=\left|\begin{array}{cc}5 m & 3 b \\ 2 n & 4 d\end{array}\right|, \Delta_{2}=\left|\begin{array}{cc}2 a & 5 m \\ 3 c & 2 n\end{array}\right|$ and $\Delta_{3}=\mid$
, then the values of x and y are
A. $\frac{\Delta_{1}}{\Delta_{3}}, \frac{\Delta_{2}}{\Delta_{3}}$
B. $\frac{\Delta_{2}}{\Delta_{1}}, \frac{\Delta_{3}}{\Delta_{1}}$
C. $\log \left(\frac{\Delta_{1}}{\Delta_{3}}\right), \log \left(\frac{\Delta_{2}}{\Delta_{3}}\right)$
D. $e^{\frac{\Delta_{1}}{\Delta_{3}}}, e^{\frac{\Delta_{2}}{\Delta_{3}}}$

Answer: D

- Watch Video Solution

19. For the equation $\left|x^{2}-2 x-3\right|=b$, which of the following statements is true?
A. For $b<0$, there are no solutions
B. For $b=0$, there are three solutions
C. For $0<b<4$, there are two solutions
D. For $b=4$, there are four solutions

Answer: A

- Watch Video Solution

20. The converse of $p \Rightarrow(q \Rightarrow r)$ is
A. $(q \wedge-r) \vee p$
B. $(\sim q \vee r) \vee p$
C. $(q \wedge \sim r) \wedge \sim p$
D. $(q \wedge \sim r) \wedge p$

Answer: A

21. If $4 x+3 y-12=0$ touches $(x-p)^{2}+(y-p)^{2}=p^{2}$, then the sum of all the possible values of p is

- Watch Video Solution

22. If A and B are two events such that $P(A)=\frac{4}{7}, P(A \cap B)=\frac{3}{28}$ and the conditional probability $P\left(\frac{A}{A^{c} \cup B^{c}}\right)$ (where A^{c} denotes the compliment of the event A) is equal to λ, then the value of $\frac{26}{\lambda}$ is equal to

- Watch Video Solution

23. If the number of terms free from radicals in the expansion of $\left(7^{\frac{1}{3}}+11^{\frac{1}{9}}\right)^{6561}$ is k, then the value of $\frac{k}{100}$ is equal to

- Watch Video Solution

24. Let $y=\sqrt{x \log _{e} x}$. If the value of $\frac{d y}{d x}$ at $x=e^{4}$ is k , then the value of $4 e^{3} k$ is (use e $=2.7$)

(Watch Video Solution

25. If the value of the integral $I=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \max (\sin x, \tan x) d x$ is equal to $\ln \mathrm{k}$, then the value of k^{2} is equa to

- Watch Video Solution

