©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 49

Mathematics

1. If $C_{0}, C_{1}, C_{2}, \ldots \ldots, C_{20}$ are the binomial coefficients in the expansion of $(1+x)^{20}$, then the value of
$\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots \ldots+19 \frac{C_{19}}{C_{18}}+20 \frac{C_{20}}{C_{19}}$
equal to (where C_{r} represetns.${ }^{n} C_{r}$)
A. 120
B. 210
C. 180
D. 240

Answer: B

D Watch Video Solution

2. If one root is greater than 2 and the other root is less than 2 for the equation
$x^{2}-(k+1) x+\left(k^{2}+k-8\right)=0$, then the value of
k lies between
A. $(-2,2)$
B. $(-2,4)$
C. $(-2,0)$
D. $(-2,3)$

Answer: D

D Watch Video Solution

3. If $a_{1}+a_{5}+a_{10}+a_{15}+a_{24}=225$, then the sum of the first 24 terms of the arithmetic progression $a_{1}, a_{2}, a_{3} \ldots \ldots$. is equal to
A. 450
B. 675
C. 900
D. 1200

Answer: C

- Watch Video Solution

4. The value of $2 \alpha+\beta\left(0<\alpha, \beta<\frac{\pi}{2}\right)$, satisfying the equation $\cos \alpha \cos \beta \cos (\alpha+\beta)=-\frac{1}{8}$ is equal to
A. $\frac{5}{6} \pi$
B. $\frac{\pi}{2}$
C. π
D. $\frac{7 \pi}{12}$

Answer: C

- Watch Video Solution

5. A pole is situated at the centre of a regular hexagonal park. The angle of elevation of the top of the vertical pole when observed from each vertex of the hexagon is $\frac{\pi}{3}$. If the area of the circle circumscribing the hexagon is $27 \mathrm{~m}^{2}$, then the height of the tower is
A. $3 \sqrt{\frac{3}{\pi}} m$
B. $\frac{3}{\sqrt{\pi}} m$
C. $\sqrt{\frac{3}{\pi}} m$
D. $\frac{9}{\sqrt{\pi}} m$

Answer: D

- Watch Video Solution

(where $[x]$ represents the greatest integer part of x)
A. x
B. $2 x$
C. $\frac{x}{2}$
D. $\frac{x}{6}$

Answer: A

D Watch Video Solution

7. Let $I=\int \frac{\cos ^{3} x}{1+\sin ^{2} x} d x$, then I is equal to (where c is the constant of integration)
A. $2 \tan ^{-1}(x)+\sin x+c$
B. $2 \tan ^{-1}(\sin x)-\sin x+c$
C. $2 \tan ^{-1}(x)-x+c$
D. $2 \tan ^{-1}(\sin x)+\sin x+c$

- Watch Video Solution

8. The slope of the tangent (other than the x - axis) drawn from the origin to the curve $y=(x-1)^{6}$ is
A. $\frac{6^{5}}{5^{4}}$
B. $-\frac{6^{5}}{5^{5}}$
C. $\frac{6^{5}}{5^{5}}$
D. $-\frac{6^{6}}{5^{5}}$

Answer: D
9. The maximum value of the expression
$\sin \theta \cos ^{2} \theta(\forall \theta \in[0, \pi])$ is
A. $\frac{2}{3}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{2}{3 \sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

D Watch Video Solution
10. The area (in sq. units) bounded by
$y=\left\{\begin{array}{ll}e^{x} & : x \geq 0 \\ e^{-x} & : x \leq 0\end{array} \quad\right.$ with the axis from
$x=-1$ to $x=1$ is
A. e
B. 2e
C. $2 e-2$
D. $2 e+2$

Answer: C

11. The slope of the tangent at any arbitrary point of a curve is twice the product of the abscissa and square of the ordinate of the point. Then, the equation of the curve is (where c is an arbitrary constant)
A. $x^{2} y+y+c=0$
B. $x^{2} y+c y+1=0$
C. $x y+y+c=0$
D. $x y^{2}+c y+y=0$

Answer: B

12. If the system of equations
$3 x+y+z=1,6 x+3 y+2 z=1$
$\mu x+\lambda y+3 z=1$ is inconsistent, then
A. $\mu \neq 9, \lambda \neq 5$
B. $\mu \neq 9, \lambda=5$
C. $\mu=9, \lambda=5$
D. $\mu=9, \lambda \neq 5$

Answer: D

- Watch Video Solution

13. The probability of an event A is $\frac{4}{5}$. The probability of an event B, given that the event A occurs is $\frac{1}{5}$. The probability of event A, given that the event B occurs is 2 $\frac{2}{3}$. The probability that neigher of the events occurs is
A. $\frac{3}{25}$
B. $\frac{2}{5}$
C. $\frac{1}{25}$
D. $\frac{2}{15}$

Answer: A

14. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=2,|\vec{b}|=1$ and $|\vec{c}|=3$. If the projection of \vec{b} along \vec{a} is double of the projection of \vec{c} along \vec{a} and \vec{b}, \vec{c} are perpendicular to each other, then the value of $\frac{|\vec{a}-\vec{b}+2 \vec{c}|^{2}}{2}$ is equal to
A. 41
B. 14
C. $\sqrt{14}$
D. 20.5

Answer: D

15. The distance of the point $(2,3,2)$ from the plane $3 x+4 y+4 z=23$ measured parallel to the line $\frac{x+3}{1}=\frac{y-6}{-2}=\frac{z-1}{1}$ is
A. $\sqrt{108}$ units
B. 12 units
C. $\sqrt{54}$ units
D. $\sqrt{236}$ units

Answer: C

D Watch Video Solution
16. Let the equations of the sides $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP of
$\begin{array}{lcc}\text { a quadrilateral } & \text { PQRS } & \text { are } \\ x+2 y-3=0, x-1=0, x-3 y-4=0 & \text { and }\end{array}$
$5 x+y+12=0$ respectively. If θ is the angle between
the diagonals $P R$ and $Q S$, then the value of $|\tan \theta|$ is
equal to
A. 2
B. -2
C. 1
D. Not defined

Answer: D
17. The locus of the point of intersection of the tangents at the extremities of a chord of the circle $x^{2}+y^{2}=r^{2} \quad$ which touches the circle
$x^{2}+y^{2}+2 r x=0$ is
A. $y^{2}=2 r\left(x-\frac{r}{2}\right)$
B. $y^{2}=-2 r\left(x+\frac{r}{2}\right)$
C. $y^{2}=2 r\left(x+\frac{r}{2}\right)$
D. $y^{2}=-2 r\left(x-\frac{r}{2}\right)$

Answer: C
18. Two straight lines having variable slopes m_{1} and m_{2} pass through the fixed points
$(a, 0)$ and $(-a, 0)$ respectively. If $m_{1} m_{2}=2$, then
the eccentricity of the locus of the point of intersection of the lines is
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 2
D. $\sqrt{\frac{3}{2}}$

Answer: B
19. For a complex number Z, if $\arg Z=\frac{\pi}{4}$ and $\left|Z+\frac{1}{Z}\right|=4$, then the value of $\left||Z|-\frac{1}{|Z|}\right|$ is equal to
A. $\sqrt{14}$
B. $\sqrt{18}$
C. 4
D. $\sqrt{12}$

Answer: A
20. In a factory, workers work in three shifts, say shift 1, shift 2 and shift 3 and they get wages in the ratio $3: 4: 8$ depending on the shift 1,2 and 3 respectively. Number of workers in the shifts are in the ratio $3: 2: 5$.

If the total number of workers working is 1500 and wages per worker in shift 1 is Rs. 300, then the mean wage of a worker is
A. Rs. 460
B. Rs. 520
C. Rs. 570
D. Rs. 420

Answer: C

- Watch Video Solution

21. The value of $a+b$ such that the inequality $a \leq 5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3 \leq b$ holds true for all the real values of θ is (equality holds on both sides atleast once for real values of θ)

D Watch Video Solution

22. If the line $y=-\frac{7}{2}$ is the directrix of the parabola $x^{2}-k y+8=0$, then the sum of all the possible values of k is equal to
23. Let A be a non-singular square matrix such that $A^{2}=A$ satisfying $(I-0.8 A)^{-1}=I-\alpha A$ where I is a unit matrix of the same order as that of A, then the value of -4α is equal to

D Watch Video Solution

24.

$f(x)=\left\{\begin{array}{cl}\left(\frac{1-\cos x}{(2 \pi-x)^{2}}\right)\left(\frac{\sin ^{2} x}{\log \left(1+4 \pi^{2}-4 \pi x+x^{2}\right)}\right) & : x \neq 2 \pi \\ \lambda & : \quad x=2 \pi\end{array}\right.$
is continuous at $x=2 \pi$, then the value of λ is equal to
25. If $\int_{20}^{40} \frac{\sin x}{\sin x+\sin (60+x)} d x=k$, then the value of $\frac{k}{4}$ is equal to

D Watch Video Solution

