

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 49

Mathematics

1. If
$$C_0, C_1, C_2, \ldots, C_{20}$$
 are the binomial coefficients in the expansion of $(1+x)^{20}$, then the value of $\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \ldots + 19\frac{C_{19}}{C_{18}} + 20\frac{C_{20}}{C_{19}}$ is

equal to (where C_r represetns .ⁿ C_r)

A. 120

B. 210

C. 180

D. 240

Answer: B

2. If one root is greater than 2 and the other root is less than 2 for the equation $x^2 - (k+1)x + (k^2 + k - 8) = 0$, then the value of

k lies between

A.
$$(-2, 2)$$

B. $(-2, 4)$
C. $(-2, 0)$
D. $(-2, 3)$

Answer: D

3. If $a_1 + a_5 + a_{10} + a_{15} + a_{24} = 225$, then the sum of the first 24 terms of the arithmetic progression a_1, a_2, a_3, \ldots is equal to

B. 675

C. 900

D. 1200

Answer: C

Watch Video Solution

4. The value of $2\alpha + \beta \left(0 < \alpha, \beta < \frac{\pi}{2}\right)$, satisfying the equation $\cos \alpha \cos \beta \cos(\alpha + \beta) = -\frac{1}{8}$ is equal to

A.
$$\frac{5}{6}\pi$$

B. $\frac{\pi}{2}$

C. *π*

D. $\frac{7\pi}{12}$

Answer: C

5. A pole is situated at the centre of a regular hexagonal park. The angle of elevation of the top of the vertical pole when observed from each vertex of the hexagon is $\frac{\pi}{3}$. If the area of the circle circumscribing the hexagon is $27m^2$, then the height of the tower is

A.
$$3\sqrt{\frac{3}{\pi}}m$$

B.
$$\frac{3}{\sqrt{\pi}}m$$

C. $\sqrt{\frac{3}{\pi}}m$
D. $\frac{9}{\sqrt{\pi}}m$

Answer: D

A. x

B. 2x

C.
$$\frac{x}{2}$$

D. $\frac{x}{6}$

Answer: A

7. Let
$$I = \int rac{\cos^3 x}{1+\sin^2 x} dx$$
, then I is equal to (where c

is the constant of integration)

A.
$$2 an^{-1}(x) + \sin x + c$$

B.
$$2 \tan^{-1}(\sin x) - \sin x + c$$

$$\mathsf{C.}\, 2 \tan^{-1}(x) - x + c$$

$$\mathsf{D.}\, 2\tan^{-1}(\sin x) + \sin x + c$$

Answer: B Watch Video Solution

8. The slope of the tangent (other than the x - axis) drawn from the origin to the curve $y = \left(x-1
ight)^6$ is

A.
$$\frac{6^5}{5^4}$$

B. $-\frac{6^5}{5^5}$
C. $\frac{6^5}{5^5}$
D. $-\frac{6^6}{5^5}$

Answer: D

9. The maximum value of the expression $\sin heta\cos^2 heta(orall heta\in[0,\pi])$ is

A.
$$\frac{2}{3}$$

B. $\frac{2}{\sqrt{3}}$
C. $\frac{2}{3\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

Watch Video Solution

10. The area (in sq. units) bounded by $y = \begin{cases} e^x & : \ x \ge 0 \\ e^{-x} & : \ x \le 0 \end{cases}$ with the axis from x = -1 to x = 1 is

A. e

B. 2e

- $\mathsf{C.}\,2e-2$
- $\mathsf{D.}\,2e+2$

Answer: C

11. The slope of the tangent at any arbitrary point of a curve is twice the product of the abscissa and square of the ordinate of the point. Then, the equation of the curve is (where c is an arbitrary constant)

A.
$$x^2y+y+c=0$$

B.
$$x^2y + cy + 1 = 0$$

C.
$$xy + y + c = 0$$

D.
$$xy^2 + cy + y = 0$$

Answer: B

Watch Video Solution

12. If the system of equations

$$3x + y + z = 1, 6x + 3y + 2z = 1$$
 and
 $\mu x + \lambda y + 3z = 1$ is inconsistent, then
A. $\mu \neq 9, \lambda \neq 5$
B. $\mu \neq 9, \lambda \neq 5$
C. $\mu = 9, \lambda = 5$
D. $\mu = 9, \lambda \neq 5$

Answer: D

13. The probability of an event A is $\frac{4}{5}$. The probability of an event B, given that the event A occurs is $\frac{1}{5}$. The probability of event A, given that the event B occurs is $\frac{2}{3}$. The probability that neigher of the events occurs is

A.
$$\frac{3}{25}$$

B. $\frac{2}{5}$
C. $\frac{1}{25}$
D. $\frac{2}{15}$

Answer: A

Watch Video Solution

14. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 1$ and $\left|\overrightarrow{c}\right| = 3$. If the projection of \overrightarrow{b} along \overrightarrow{a} is double of the projection of \overrightarrow{c} along \overrightarrow{a} and \overrightarrow{b} , \overrightarrow{c} are perpendicular to each other, then $\left|\overrightarrow{a} - \overrightarrow{b} + 2\overrightarrow{c}\right|^2$ is equal to

A. 41

B. 14

C. $\sqrt{14}$

D. 20.5

Answer: D

15. The distance of the point (2, 3, 2) from the plane 3x + 4y + 4z = 23 measured parallel to the line $\frac{x+3}{1} = \frac{y-6}{-2} = \frac{z-1}{1}$ is

A. $\sqrt{108}$ units

B. 12 units

C. $\sqrt{54}$ units

D. $\sqrt{236}$ units

Answer: C

16. Let the equations of the sides PQ, QR, RS and SP of

а	quadrilateral	PQRS	are
x+2y	-3=0, x-1=0, x	x - 3y - 4 = 0	and
5x + y	$+\ 12 = 0$ respectively.	If $ heta$ is the angle b	etween
the dia	gonals PR and QS, the	n the value of $ { m t}$	$\operatorname{an} heta $ is
equal t	0		

A. 2

 $\mathsf{B.}-2$

C. 1

D. Not defined

Answer: D

17. The locus of the point of intersection of the tangents at the extremities of a chord of the circle $x^2 + y^2 = r^2$ which touches the circle $x^{2} + y^{2} + 2rx = 0$ is A. $y^2=2r\Big(x-rac{r}{2}\Big)$ $\mathsf{B}.\,y^2=\,-\,2r\Big(x+\frac{r}{2}\Big)$ $\mathsf{C}.\,y^2 = 2r\Big(x+\frac{r}{2}\Big)$ $\mathsf{D}.\,y^2=\,-\,2r\Big(x-\frac{r}{2}\Big)$

Answer: C

18. Two straight lines having variable slopes m_1 and m_2 pass through the fixed points (a, 0) and (-a, 0) respectively. If $m_1m_2 = 2$, then the eccentricity of the locus of the point of intersection of the lines is

A. $\sqrt{2}$

B. $\sqrt{3}$

C. 2

D.
$$\sqrt{rac{3}{2}}$$

Answer: B

19. For a complex number Z, if arg $Z = \frac{\pi}{4}$ and $\left|Z + \frac{1}{Z}\right| = 4$, then the value of $\left||Z| - \frac{1}{|Z|}\right|$ is equal to

B. $\sqrt{18}$

C. 4

D. $\sqrt{12}$

Answer: A

20. In a factory, workers work in three shifts, say shift 1, shift 2 and shift 3 and they get wages in the ratio 3:4:8 depending on the shift 1, 2 and 3 respectively. Number of workers in the shifts are in the ratio 3:2:5. If the total number of workers working is 1500 and wages per worker in shift 1 is Rs. 300, then the mean wage of a worker is

A. Rs. 460

B. Rs. 520

C. Rs. 570

D. Rs. 420

Answer: C

21. The value of a + b such that the inequality $a \leq 5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq b$ holds true for all the real values of θ is (equality holds on both sides atleast once for real values of θ)

Watch Video Solution

22. If the line $y = -\frac{7}{2}$ is the directrix of the parabola $x^2 - ky + 8 = 0$, then the sum of all the possible

values of k is equal to

23. Let A be a non - singular square matrix such that $A^2 = A$ satisfying $(I - 0.8A)^{-1} = I - \alpha A$ where I is a unit matrix of the same order as that of A, then the value of -4α is equal to

$$f(x) = egin{cases} \left(rac{1-\cos x}{\left(2\pi-x
ight)^2}
ight) \left(rac{\sin^2 x}{\log\left(1+4\pi^2-4\pi x+x^2
ight)}
ight) &: x
eq 2\pi \ \lambda &: x=2\pi \end{cases}$$

is continuous at $x=2\pi$, then the value of λ is equal

to

Watch Video Solution

25. If
$$\int_{20}^{40} rac{\sin x}{\sin x + \sin(60 + x)} dx = k$$
, then the value of $rac{k}{4}$ is equal to

O Watch Video Solution