©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 50

Mathematics

1. If the coefficients of three consecutive terms in
the expansion of $(1+x)^{n}$ are in the ratio 1:7:42,
then find the value of n.
A. 49
B. 50
C. 55
D. 56

Answer: C

- Watch Video Solution

2. The sum of the divisors of 9600 is
A. 3048
B. 6120
C. 31620
D. 24384

Answer: C

D Watch Video Solution

3. If the equation of the hypotenuse of a right angled isosceles triangle is $3 x+4 y=4$ and its opposite vertex is $(2,2)$, then the equations of the perpendicular and the base are respectively
A. $7 x+y=16 \& x-7 y+12=0$
B. $7 x-y=12 \& x+7 y=16$
C. $5 x+y=12 \& x-5 y+8=0$
D. $x+5 y=12 \& 5 x-y=8$

Answer: A

(D) Watch Video Solution
4. The equation $k \cos x-3 \sin x=k+1$ is solvable only if
A. $k \in(-\infty, 4)$
B. $k \in(-\infty, 4]$
C. $k \in(4, \infty)$
D. $k \in[4, \infty)$

Answer: B

D Watch Video Solution
5. If $f(x)= \begin{cases}e^{2 x^{2}+x} & : x>0 \\ a x+b & : x \leq 0\end{cases}$
differentiable at $x=0$, then
A. $a=1, b=-1$
B. $a=-1, b=1$
C. $a=1, b=1$
D. $a=-1, b=-1$

Answer: C

D Watch Video Solution

6. The equation of the circle which passes through the point $A(0,5)$ and $B(6,1)$ and whose centre lies on the line $12 x+5 y=25$ is

A. $3 x^{2}+3 y^{2}+10 x+6 y+15=0$

B. $3 x^{2}+3 y^{2}-10 x-6 y-45=0$
C. $x^{2}+y^{2}-6 x-6 y+5=0$
D. $x^{2}+y^{2}-4 x-3 y-10=0$

Answer: B

D Watch Video Solution

7. A function $f: Z \rightarrow Z$ is defined as
$f(n)=\left\{\begin{array}{ll}n+1 & n \in \text { odd integer } \\ \frac{n}{2} & n \in \text { even integer }\end{array}\right.$. If $\mathrm{k} \in$
odd integer and $f(f(f)))=33$, then the sum of the digits of k is
A. 7
B. 5
C. 9
D. 9

Answer: B
(D) Watch Video Solution
8.
The
value
$\tan ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right]\left(\forall x \in\left[0, \frac{\pi}{2}\right]\right)$
is equal to
A. $\frac{x}{2}-\frac{\pi}{2}$
B. $\frac{x}{2}+\frac{\pi}{2}$
C. $\frac{x}{2}-\pi$
D. $\frac{\pi}{2}-\frac{x}{2}$

Answer: A

9. The negation of the statement "If I will become

 famous then I will open a school" isA.I will become rich and I will not open a school

B. Either I will not become rich or I will not open a school.

C. Neither I will become rich nor I will open a school.
D. I will not become rich or I will open a school.

Answer: A

D Watch Video Solution

10. Let a continous and differentiable function $f(x)$ is such that $f(x)$ and $\frac{d}{d x} f(x)$ have opposite signs everywhere. Then,
A. $f^{\prime}(x)$ is always increasing
B. $f(x)$ is always increasing
C. $|f(x)|$ is non - decreasing
D. $|f(x)|$ is decreasing

Answer: D

D Watch Video Solution

11. The value of $\int \frac{1}{(2 x-1) \sqrt{x^{2}-x}} d x$ is equal to (where c is the constant of integration)
A. $\sec ^{-1}(x-1)+c$
B. $\sec ^{-1}(2 x-1)+c$
C. $\tan ^{-1} x+c$
D. $\tan ^{-1}(2 x-1)+c$

Answer: B

D Watch Video Solution

12. Find the equation of the tangent to the parabola $y^{2}=4 x+5$ which is parallel to the straight line $y=2 x+7$
A. $y=2 x$
B. $y=2 x-3$
C. $y=2 x+3$
D. $y=2 x+5$

Answer: C

D Watch Video Solution

13. The area of the smaller part of the circle $x^{2}+y^{2}=2$ cut off by the line $x=1$ is
A. $\frac{\pi}{2}$ sq. units
B. $\left(\frac{\pi}{2}-1\right)$ sq. units
C. $\left(\frac{\pi}{2}+1\right)$ sq. units
D. $\left(\frac{\pi}{2}-\frac{1}{2}\right)$ sq. units

Answer: B

D Watch Video Solution

14. If a and b are arbitrary constants, then the order and degree of the differential equation of the family of curves $a x^{2}+b y^{2}=2$ respectively are
A. 2, 2
B. 1, 2
C. 1, 1
D. 2, 1

Answer: D

D Watch Video Solution

15. \vec{a}, \vec{b} and \vec{c} are coplanar unit vectors. A unit vector \vec{d} is perpendicular to them. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{b})=\frac{3}{26} \hat{i}-\frac{2}{13} \hat{j}+\frac{6}{13} \hat{k}$ and the angle between \vec{a} and \vec{b} is 30°, then \vec{c} is equal to

$$
\text { A. } \frac{3}{13} \hat{i}-\frac{4}{13} \hat{j}+\frac{12}{13} \hat{k}
$$

B. $\frac{2}{7} \hat{i}-\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}$
C. $3 \hat{i}-4 \hat{j}+12 \hat{k}$
D. $\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$

Answer: A

D Watch Video Solution

16. Direction cosines to the normal to the plane containing the lines $\frac{x}{2}=\frac{y}{3}=\frac{z}{5} \quad$ and $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{5}$ are
A. $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{5}{\sqrt{14}}$

$$
\begin{aligned}
& \text { B. } \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}} \\
& \text { C. } \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{1}{\sqrt{14}} \\
& \text { D. } \frac{3}{\sqrt{13}}, \frac{-2}{\sqrt{13}}, 1
\end{aligned}
$$

Answer: B

(D) Watch Video Solution

17. If α, β and γ are the roots of the equation $x^{3}-3 x^{2}+4 x+4=0$, then the value of

$$
\left|\begin{array}{ccc}
a^{2}+1 & 1 & 1 \\
1 & \beta^{2}+1 & 1 \\
1 & 1 & \gamma^{2}+1
\end{array}\right|
$$

A. 32
B. 16
C. 56

D. 64

Answer: C

D Watch Video Solution

18.

For
the
equation
$\frac{1-i x}{1+i x}=\sin . \frac{\pi}{7}-i \cos . \frac{\pi}{7}$, if $x=\tan \left(\frac{k \pi}{28}\right)$,
then the value of k can be (where $i^{2}=-1$)
A. 1
B. 3
C. 5
D. 9

Answer: C

D Watch Video Solution

19. Shubham has 75% chance of attending the annual meet. Shikha has a 90% chance if

Shubham also attends otherwise she has a 40%
chance of attending the meet. If I go to the annual meet and see Shikha there, then the probability the Shubam is also there, is
A. $\frac{27}{31}$
B. $\frac{19}{30}$
C. $\frac{1}{5}$
D. $\frac{9}{10}$

Answer: A
20. Let A and B be two matrices such that the order of A is 5×7. If $A^{T} B$ and $B A^{T}$ are both defined, then (where A^{T} is the transpose of matrix A)
A. order of B^{T} is 5×7
B. order of $B^{T} A$ is 7×7
C. order of $B^{T} A$ is 5×5
D. $B^{T} A$ is undefined

Answer: B
21. The value of $\lim _{x \rightarrow \infty} \frac{e^{x+1} \log \left(x^{3} e^{-x}+1\right)}{\sin ^{3}(2 x)}$ is equal to
(Use e = 2.7)

(D) Watch Video Solution

22. A continous function $f(x)$ is such that $f(3 x)=2 f(x), \forall x \in R . \quad$ If $\quad \int_{0}^{1} f(x) d x=1$,
then $\int_{1}^{3} f(x) d x$ is equal to
23. The sum of 50 terms of the series
$3+7+13+21+31+43+\ldots$ is equal to
S_{50}, then the valueof $\frac{S_{50}}{12500}$ is

(Watch Video Solution

24. If θ is the angle between the pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point (1,2), then the value of $\tan ^{2} \theta$ is equal to
25. The mean and variance of 5 observations are

6 and 6.8 respectively. If a number equal to mean
is included in the set of observations is k, then
the value of $\frac{34}{k}$ is equal to

