

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 50

Mathematics

1. If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1:7:42, then find the value of n.

A. 49

B. 50

C. 55

D. 56

Answer: C

2. The sum of the divisors of 9600 is

A. 3048

B. 6120

C. 31620

D. 24384

Answer: C

Watch Video Solution

3. If the equation of the hypotenuse of a right angled isosceles triangle is 3x + 4y = 4 and its opposite vertex is (2, 2), then the equations of the perpendicular and the base are respectively

A.
$$7x + y = 16\&x - 7y + 12 = 0$$

B.
$$7x - y = 12\&x + 7y = 16$$

C.
$$5x + y = 12\&x - 5y + 8 = 0$$

D. x + 5y = 12&5x - y = 8

Answer: A

Watch Video Solution

4. The equation $k\cos x - 3\sin x = k+1$ is solvable only if

A.
$$k \in (-\infty,4)$$

B. $k \in (-\infty,4]$
C. $k \in (4,\infty)$
D. $k \in [4,\infty)$

Watch Video Solution

5. If
$$f(x) = \left\{ egin{array}{ccc} e^{2x^2 + x} & : & x > 0 \ ax + b & : & x \leq 0 \end{array}
ight.$$

is

differentiable at x = 0, then

A. a = 1, b = -1

B.
$$a = -1, b = 1$$

C.
$$a = 1, b = 1$$

D. a = -1, b = -1

Answer: C

6. The equation of the circle which passes through the point A(0, 5) and B(6, 1) and whose centre lies on the line 12x + 5y = 25 is

A.
$$3x^2 + 3y^2 + 10x + 6y + 15 = 0$$

B.
$$3x^2 + 3y^2 - 10x - 6y - 45 = 0$$

C.
$$x^2 + y^2 - 6x - 6y + 5 = 0$$

D.
$$x^2 + y^2 - 4x - 3y - 10 = 0$$

7. A function
$$f: Z \to Z$$
 is defined as $f(n) = egin{cases} n+1 & n \in & ext{odd integer} \\ rac{n}{2} & n \in ext{even integer} \end{cases}$. If k \in

odd integer and f(f(f(k))) = 33, then the sum

of the digits of k is

A. 7

B. 5

C. 9

D. 9

Answer: B

is equal to

A.
$$rac{x}{2}-rac{\pi}{2}$$

B. $rac{x}{2}+rac{\pi}{2}$
C. $rac{x}{2}-\pi$
D. $rac{\pi}{2}-rac{x}{2}$

Answer: A

9. The negation of the statement "If I will become

famous then I will open a school" is

- A. I will become rich and I will not open a school
- B. Either I will not become rich or I will not

open a school.

- C. Neither I will become rich nor I will open a school.
- D. I will not become rich or I will open a school.

Answer: A

10. Let a continous and differentiable function f(x) is such that f(x) and $\frac{d}{dx}f(x)$ have opposite signs everywhere. Then,

A. f'(x) is always increasing

- B. f(x) is always increasing
- C. |f(x)| is non decreasing
- D. |f(x)| is decreasing

Answer: D

11. The value of
$$\int \frac{1}{(2x-1)\sqrt{x^2-x}} dx$$
 is equal to (where c is the constant of integration)

A.
$$\sec^{-1}(x-1)+c$$

B.
$$\sec^{-1}(2x-1)+c$$

C.
$$an^{-1}x + c$$

D.
$$an^{-1}(2x-1)+c$$

12. Find the equation of the tangent to the parabola $y^2 = 4x + 5$ which is parallel to the straight line y = 2x + 7

A.
$$y = 2x$$

B.
$$y = 2x - 3$$

C.
$$y = 2x + 3$$

D.
$$y = 2x + 5$$

Answer: C

13. The area of the smaller part of the circle $x^2+y^2=2$ cut off by the line x=1 is

A.
$$\frac{\pi}{2}$$
 sq. units
B. $\left(\frac{\pi}{2} - 1\right)$ sq. units
C. $\left(\frac{\pi}{2} + 1\right)$ sq. units
D. $\left(\frac{\pi}{2} - \frac{1}{2}\right)$ sq. units

14. If a and b are arbitrary constants, then the order and degree of the differential equation of the family of curves $ax^2 + by^2 = 2$ respectively are

A. 2, 2

B. 1, 2

C. 1, 1

D. 2, 1

Answer: D

15. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar unit vectors. A unit vector \overrightarrow{d} is perpendicular to them. If $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{b}\right) = \frac{3}{26}\hat{i} - \frac{2}{13}\hat{j} + \frac{6}{13}\hat{k}$ and the angle between \overrightarrow{a} and \overrightarrow{b} is 30° , then \overrightarrow{c} is equal to

A.
$$rac{3}{13}\hat{i} - rac{4}{13}\hat{j} + rac{12}{13}\hat{k}$$

B.
$$rac{2}{7}\hat{i} - rac{3}{7}\hat{j} + rac{6}{7}\hat{k}$$

C. $3\hat{i} - 4\hat{j} + 12\hat{k}$
D. $rac{1}{\sqrt{3}}\hat{i} - rac{1}{\sqrt{3}}\hat{j} + rac{1}{\sqrt{3}}\hat{k}$

Answer: A

Watch Video Solution

16. Direction cosines to the normal to the plane

containing the lines
$$\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$$
 and $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{5}$ are
A. $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{5}{\sqrt{14}}$

$$\begin{array}{l} \mathsf{B}.\,\frac{2}{\sqrt{14}},\,\frac{-3}{\sqrt{14}},\,\frac{1}{\sqrt{14}}\\ \mathsf{C}.\,\frac{2}{\sqrt{14}},\,\frac{-1}{\sqrt{14}},\,\frac{1}{\sqrt{14}}\\ \mathsf{D}.\,\frac{3}{\sqrt{13}},\,\frac{-2}{\sqrt{13}},\,1 \end{array}$$

17. If
$$\alpha$$
, β and γ are the roots of the equation
 $x^3 - 3x^2 + 4x + 4 = 0$, then the value of
 $\begin{vmatrix} a^2 + 1 & 1 & 1 \\ 1 & \beta^2 + 1 & 1 \\ 1 & 1 & \gamma^2 + 1 \end{vmatrix}$ is equal to

A. 32

B. 16

C. 56

D. 64

Answer: C

A. 1

B. 3

C. 5

D. 9

Answer: C

19. Shubham has 75% chance of attending the annual meet. Shikha has a 90% chance if Shubham also attends otherwise she has a 40%

chance of attending the meet. If I go to the annual meet and see Shikha there, then the probability the Shubam is also there, is

A.
$$\frac{27}{31}$$

B. $\frac{19}{30}$
C. $\frac{1}{5}$
D. $\frac{9}{10}$

Answer: A

20. Let A and B be two matrices such that the order of A is 5×7 . If $A^T B$ and BA^T are both defined, then (where A^T is the transpose of matrix A)

A. order of B^T is 5 imes 7

B. order of B^TA is 7 imes 7

C. order of B^TA is 5 imes 5

D. $B^T A$ is undefined

Answer: B

21. The value of
$$\lim_{x
ightarrow\infty}~rac{e^{x+1}\logig(x^3e^{-x}+1ig)}{\sin^3(2x)}$$
 is

equal to

(Use e = 2.7)

Watch Video Solution

22. A continous function f(x) is such that $f(3x)=2f(x),\ orall x\in R.$ If $\int_0^1f(x)dx=1,$ then $\int_1^3f(x)dx$ is equal to

24. If heta is the angle between the pair of tangents drawn to the ellipse $3x^2 + 2y^2 = 5$ from the point (1, 2), then the value of $an^2 heta$ is equal to

25. The mean and variance of 5 observations are 6 and 6.8 respectively. If a number equal to mean is included in the set of observations is k, then the value of $\frac{34}{k}$ is equal to