© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 52

Mathematics

1. The coefficient of x 20 in the expansion of
$\left(1+x^{2}\right)^{40} \cdot\left(x^{2}+2+\frac{1}{x^{2}}\right)^{-5}$ is :
A. ${ }^{30} C_{10}$
B. ${ }^{30} C_{15}$
C. ${ }^{30} C_{25}$
D. ${ }^{30} C_{20}$

Answer: C

D Watch Video Solution

2. Consider the function $f(x)=(x-2)\left|x^{2}-3 x+2\right|$
, then the incorrect statement is
A. $f(x)$ is continuous at $x=1$
B. $f(x)$ is continuous at $x=2$
C. $f(x)$ is differentiable at $x=1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=2$

Answer: C

- Watch Video Solution

3. Let the vertices of a triangle are
$A=(-3+2 \sin \theta, 4+2 \cos \theta)$, and
$B=(-3+2 \cos \theta, 4-2 \cos \theta)$, then the distance between the centroid and the circumcentre of $\triangle A B C$ is
A. $\frac{2}{3}$ units
B. $\frac{3}{2}$ units
C. $\frac{1}{2}$ units
D. $\frac{1}{3}$ units

Answer: A

D Watch Video Solution

4. The compound statement $(p \rightarrow q) \vee(p \wedge \sim q)$ is logically equivalent to
A. $p \leftrightarrow q$
B. $p \wedge q$
C. tautology
D. contradiction

Answer: C

- Watch Video Solution

5. If A and B are two sets such that $n(A)=2$ and $n(B)=4$, then the total number of subsets of $A \times B$ not having more than 5 elements are
A. 219
B. 247
C. 239
D. 248

D Watch Video Solution

6. For a function $f(x)=\frac{2\left(x^{2}+1\right)}{[x]}$ (where [.] denotes the greatest integer function), if $1 \leq x<4$. Then
A. the range of f is $\left(4, \frac{17}{2}\right)$
B. f is bijective function
C. the maximum value of $f(x)$ is $\frac{34}{3}$
D. the minimum value of $f(x)$ is 4

Answer: D

7. The value of $\lim _{x \rightarrow \pi} \frac{\sin \left(2 \pi \cos ^{2} x\right)}{\tan \left(\pi \sec ^{2} x\right)}$. Is equal to
A. 1
B. 2
C. -2
D. 0

Answer: C

8. The number of times the digit 0 is used in writing the numbers from 1 to 1000 is equal to
A. 189
B. 300
C. 192
D. 270

Answer: C

- Watch Video Solution

9.

The
integral
$I=\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=e^{x} f(x)+C$
(where, C is the constant of integration).
Then, the range of $y=f(x)$ (for all x in the domain of $f(x)$) is
A. $[-1,1]$
B. $(-\infty, \infty)$
C. $(-1,1)$
D. $[0, \infty)$

Answer: B
10. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right], A_{1}$ be a matrix formed by the cofactors of the elements of the matrix A and
A_{2} be a matrix formed by the cofactors of the elements of matrix A_{1}. Similarly, If A_{10} be a matrrix formed by the cofactors of the elements of matrix A_{9}, then the value of $\left|A_{10}\right|$ is
A. 3^{10}
B. 3^{20}
C. 9
D. 3^{1024}

Answer: D

D Watch Video Solution

11. The area bounded by the parabola $4 y=3 x^{2}$, the
line $2 y=3 x+12$ and the y - axis is
A. 10 sq. units
B. 20 sq. units
C. 30 sq. units
D. 36 sq. units

Answer: B
12. The solution of the differential equation $\frac{d y}{d x}=\frac{x y+y}{x y+x}$ is $y-\lambda x=\ln \left(\frac{x}{y}\right)+C$ (where, C is an arbitrary constant and $x, y>0$). Then, the valeu of
λ is equal to
A. 1
B. $\frac{1}{2}$
C. 2
D. 4

Answer: A
13. The mean and variance of a random variable X having a binomial probability distribution are 6 and 3 respectively, then the probabiltiy $P(X \geq 2)$ is
A. $\frac{13}{4096}$
B. $\frac{4083}{4096}$
C. $\frac{3}{1024}$
D. $\frac{13}{2048}$

Answer: B

14. Let $\quad|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5 \quad$ and $\vec{a} \times(\vec{a} \times \vec{c})+4 \vec{b}=0$, then the value of $|\vec{a} \times \vec{c}|^{2}$ equals to
A. $\frac{9}{256}$
B. $\frac{16}{3}$
C. $\frac{256}{9}$
D. $\frac{3}{16}$

Answer: C
15. If $A=\left[\begin{array}{ll}2 & 2 \\ 9 & 4\end{array}\right]$ and $A^{2}+a A+b I=O$. Then
$a+2 b$ is equal to (where, I is an identity matrix and O
is a null matrix of order 2 respectively)
A. 27
B. -26
C. 24
D. 12

Answer: B

D Watch Video Solution
16. The value of the definite integral $I=\int_{-1}^{1} \ln \left(\frac{2-\sin ^{3} x}{2+\sin ^{3} x}\right) d x$ is equal to
A. In 4
B. $\ln 2$
C. 0
D. $\ln \left(\frac{1}{2}\right)$

Answer: C

17. The length of the perpendicular (in units) from the point (1, 2, 4) on the straight line $\frac{x-2}{1}=\frac{y-7}{2}=\frac{z-3}{-1}$ lies in the interval
A. $\left(1, \frac{3}{2}\right)$
B. $(2,3)$
C. $(0,2]$
D. $[4,5)$

Answer: C

D Watch Video Solution
18. Let the images of the point $A(2,3)$ about the lines
$y=x$ and $y=m x$ are P and Q respectively. If the line $P Q$ passes through the origin, then m is equal to
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. -1
D. 5

Answer: C

D Watch Video Solution
19. If the sum of the series
$1+\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+\ldots \ldots+\frac{(2 n-1)}{(2)^{n-1}}$ is $f(n)$, then
the value of $f(8)$ is

$$
\begin{aligned}
& \text { A. } 4+\frac{12}{2^{5}} \\
& \text { B. } 5+\frac{13}{2^{7}} \\
& \text { C. } 6-\frac{19}{2^{7}} \\
& \text { D. } 5-\frac{13}{2^{7}}
\end{aligned}
$$

Answer: C

20. The focus and corresponding directrix of an ellipse are $(3,4)$ and $x+y-1=0$ respectively. If the eccentricity of the ellipse is $\frac{1}{2}$, then the coordinates of the centre of the ellipse are
A. $(2,3)$
B. $(4,5)$
C. $(8,9)$
D. $(1,2)$

Answer: B

- Watch Video Solution

21. If $\left(\frac{4 i^{3}-i}{2 i+1}\right)^{2}=r(\cos \theta+i \sin \theta)$, then $\cos \theta+\sin \theta$ is equal to (where, $i^{2}=-1$)

D Watch Video Solution

22. The distance between the focus and the directrix of the conic $(\sqrt{3 x}-y)^{2}=48(x+\sqrt{3} y)$ is :

- Watch Video Solution

23. If the direction ratios of a line are $1+\lambda, 2-\lambda, 4$
and if it makes an angle of 60° with the y - axis, then the sum of the values of λ is
$\sin ^{-1}\left(\frac{5}{x}\right)+\sin ^{-1}\left(\frac{12}{x}\right)=\sin ^{-1}\left(\frac{2}{x}\right)+\cos ^{-1}\left(\frac{2}{x}\right)$
then the value of x is equal to

- Watch Video Solution

25. The volume of the greatest cone obtained by rotating a right - angled triangle of hypotenuse 2 units about a side is $\frac{k \pi}{9 \sqrt{3}}$ cubic units, then the value of k is equal to
