

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 52

Mathematics

1. The coefficient of x20 in the expansion of $\left(1+x^2
ight)^{40}\cdot\left(x^2+2+rac{1}{x^2}
ight)^{-5}$ is : A. $\cdot^{30}C_{10}$

B. $.^{30} C_{15}$

C. . $^{30} C_{25}$

D. . 30 C_{20}

Answer: C

2. Consider the function $f(x) = (x-2) ig| x^2 - 3x + 2 ig|$

, then the incorrect statement is

A. f(x) is continuous at x = 1

B. f(x) is continuous at x = 2

C. f(x) is differentiable at x = 1

D. f(x) is differentiable at x = 2

3. Let the vertices of a triangle are
$$A = (-3 + 2\sin\theta, 4 + 2\cos\theta),$$
 and $B = (-3 + 2\cos\theta, 4 - 2\cos\theta),$ then the distance between the centroid and the circumcentre of ΔABC is

A.
$$\frac{2}{3}$$
 units
B. $\frac{3}{2}$ units

C.
$$\frac{1}{2}$$
 units
D. $\frac{1}{3}$ units

Answer: A

4. The compound statement $(p
ightarrow q) \lor (p \land \sc q)$ is logically equivalent to

 $\mathsf{A.}\, p \leftrightarrow q$

 $\mathsf{B.}\,p\wedge q$

C. tautology

D. contradiction

Answer: C

5. If A and B are two sets such that n(A) = 2 and n(B) = 4, then the total number of subsets of $A \times B$ not having more than 5 elements are

A. 219

B. 247

C. 239

D. 248

Answer: A

6. For a function $f(x)=rac{2ig(x^2+1ig)}{[x]}$ (where [.] denotes the greatest integer function), if $1\leq x<4$. Then

A. the range of f is
$$\left(4, rac{17}{2}
ight)$$

B. f is bijective function

C. the maximum value of f(x) is $\frac{34}{3}$

D. the minimum value of f(x) is 4

Answer: D

7. The value of
$$\lim_{x o\pi} rac{\sin(2\pi\cos^2 x)}{\tan(\pi\sec^2 x)}$$
. Is equal to

A. 1

B. 2

C. -2

D. 0

8. The number of times the digit 0 is used in writing

the numbers from 1 to 1000 is equal to

A. 189

B. 300

C. 192

D. 270

The

integral

$$I=\int\!\!e^xigg(rac{1+\sin x}{1+\cos x}igg)dx=e^xf(x)+C$$

(where, C is the constant of integration).

Then, the range of y=f(x) (for all x in the domain of f(x)) is

A. $[\,-1,1]$ B. $(\,-\infty,\infty)$ C. $(\,-1,1)$ D. $[0,\infty)$

Answer: B

9.

10. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$, A_1 be a matrix formed

by the cofactors of the elements of the matrix A and A_2 be a matrix formed by the cofactors of the elements of matrix A_1 . Similarly, If A_{10} be a matrrix formed by the cofactors of the elements of matrix A_9 , then the value of $|A_{10}|$ is

A. 3^{10}

B. 3^{20}

C. 9

D. 3^{1024}

Answer: D Watch Video Solution

11. The area bounded by the parabola $4y = 3x^2$, the line 2y = 3x + 12 and the y - axis is

A. 10 sq. units

B. 20 sq. units

C. 30 sq. units

D. 36 sq. units

Answer: B

Watch Video Solution

12. The solution of the differential equation $\frac{dy}{dx} = \frac{xy+y}{xy+x}$ is $y - \lambda x = \ln\left(\frac{x}{y}\right) + C$ (where, C is an arbitrary constant and x, y > 0). Then, the value of λ is equal to

A. 1

 $\mathsf{B.}\;\frac{1}{2}$

C. 2

D. 4

Answer: A

13. The mean and variance of a random variable X having a binomial probability distribution are 6 and 3 respectively, then the probability $P(X \ge 2)$ is

A.
$$\frac{13}{4096}$$

B. $\frac{4083}{4096}$
C. $\frac{3}{1024}$
D. $\frac{13}{2048}$

Answer: B

14. Let
$$\left| \overrightarrow{a} \right| = 3$$
, $\left| \overrightarrow{b} \right| = 4$, $\left| \overrightarrow{c} \right| = 5$ and
 $\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{c} \right) + 4 \overrightarrow{b} = 0$, then the value of
 $\left| \overrightarrow{a} \times \overrightarrow{c} \right|^2$ equals to

A.
$$\frac{3}{256}$$

B. $\frac{16}{3}$
C. $\frac{256}{9}$
D. $\frac{3}{16}$

15. If $A = \begin{bmatrix} 2 & 2 \\ 9 & 4 \end{bmatrix}$ and $A^2 + aA + bI = O$. Then a + 2b is equal to (where, I is an identity matrix and O is a null matrix of order 2 respectively)

A. 27

B.-26

C. 24

D. 12

Answer: B

16. The value of the definite integral $I = \int_{-1}^{1} \ln \left(\frac{2 - \sin^3 x}{2 + \sin^3 x} \right) dx$ is equal to

A. In 4

B. In 2

C. 0

$$\operatorname{D.}\ln\left(\frac{1}{2}\right)$$

17. The length of the perpendicular (in units) from the

point (1, 2, 4) on the straight line $\frac{x-2}{1} = \frac{y-7}{2} = \frac{z-3}{-1}$ lies in the interval A. $\left(1, \frac{3}{2}\right)$ B. (2, 3) C. (0, 2] D. [4, 5)

18. Let the images of the point A(2, 3) about the lines y = x and y = mx are P and Q respectively. If the line PQ passes through the origin, then m is equal to

A.
$$\frac{3}{2}$$

B. $\frac{2}{3}$

Answer: C

Watch Video Solution

the value of f(8) is

A.
$$4 + rac{12}{2^5}$$

B. $5 + rac{13}{2^7}$
C. $6 - rac{19}{2^7}$
D. $5 - rac{13}{2^7}$

20. The focus and corresponding directrix of an ellipse are (3, 4) and x + y - 1 = 0 respectively. If the eccentricity of the ellipse is $\frac{1}{2}$, then the coordinates of the centre of the ellipse are

A. (2, 3)

B. (4, 5)

C. (8, 9)

D. (1, 2)

Answer: B

21. If
$$\left(rac{4i^3-i}{2i+1}
ight)^2 = r(\cos heta+i\sin heta)$$
, then

 $\cos heta+\sin heta$ is equal to (where, $i^2=-1$)

23. If the direction ratios of a line are $1 + \lambda$, $2 - \lambda$, 4and if it makes an angle of 60° with the y- axis, then the sum of the values of λ is

24. If
$$\sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \sin^{-1}\left(\frac{2}{x}\right) + \cos^{-1}\left(\frac{2}{x}\right)$$

then the value of x is equal to

25. The volume of the greatest cone obtained by rotating a right - angled triangle of hypotenuse 2 units about a side is $\frac{k\pi}{9\sqrt{3}}$ cubic units, then the value of k is equal to

Watch Video Solution