©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 53

Mathematics

1. Let $A=\left[a_{i j}\right]$ be a square matrix of order 3 and $B=\left[b_{i j}\right]$ be a matrix such that

$$
b_{i j}=2^{i-j} a_{i j} \text { for } 1 \leq i, j \leq 3, \forall i, j \in N
$$

If the determinant of A is same as its order,
then the value of $\left|\left(B^{T}\right)^{-1}\right|$ is
A. $\frac{1}{3}$
B. 3
C. 9
D. $\frac{1}{27}$

Answer: A
(Watch Video Solution
2. A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. The total number of ways in which he can make the predictions, so that exactly 10 predictions are correct, is equal to
A..$^{20} C_{10} .2^{10}$
B. . ${ }^{20} C_{10} .3^{20}$
C..$^{20} C_{10} .3^{01}$
D. ${ }^{20} C_{10} .5^{20}$

Answer: A

- Watch Video Solution

3. The quadratic equation whose roots are the arithmetic mean and the harmonic mean of the roots of the equation $x^{2}+7 x-1=0$ is
A. $14 x^{2}+14 x-45=0$
B. $45 x^{2}-14 x+14=0$
C. $14 x^{2}+45 x-14=0$
D. $45 x^{2}+14 x-45=0$

Answer: C

- Watch Video Solution

4. If $a+b+c=3$ and $a>0, b>0, c>0$
then the greatest value of $a^{2} b^{2} c^{2}$ is

$$
\begin{aligned}
& \text { A. } \frac{3^{10} 2^{4}}{7^{7}} \\
& \text { B. } \frac{3^{9} 2^{4}}{7^{7}} \\
& \text { C. } \frac{3^{8} 2^{4}}{7^{7}} \\
& \text { D. } \frac{3^{9} 2^{3}}{7^{6}}
\end{aligned}
$$

D Watch Video Solution

5. The point at which the line segment joining
$A(1,1)$ and $B(5,5)$ subtends an obtuse angle is
A. $(7,7)$
B. $(0,5)$
C. $(2,4)$
D. $(1,5)$

Answer: C

- Watch Video Solution

6. The average weight of students in a class of

35 students is 40 kg . If the weight of the
teacher is included, then the average raises by
$\frac{1}{3} \mathrm{~kg}$. The weight of the teacher is
A. 40.5 kg
B. 50 kg
C. 41 kg

D. 52 kg

Answer: D

D Watch Video Solution

7. Two straight roads $O A$ and $O B$ intersect at O.

A tower is situated within the angle formed by
them and subtends angles of 45° and 30° at
the points A and B where the roads are nearest to it. If
$\mathrm{OA}=400$ meters and
$O B=300$ meters, than the height of the tower is
A. $250 \sqrt{2}$ meters
B. 500 meters
C. $50 \sqrt{14}$ meters
D. $100 \sqrt{7}$ meters

Answer: C

- Watch Video Solution

8. The value of

$$
x^{2} \tan \left(\frac{1}{x}\right)
$$

$$
\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{4 x^{2}-x+1}}
$$ equal to

A. 1
B. $\frac{1}{2}$
C. -1
D. $-\frac{1}{2}$

Answer: D

- Watch Video Solution

9. The range of the function
$f(x)=\sin ^{-1}\left[x^{2}-\frac{1}{3}\right]-\cos ^{-1}\left[x^{2}+\frac{2}{-}\right]$ is
(where, [x] represents the greatest integer
value of x)
A. $[-\pi, 0]$
B. $\{-\pi, 0\}$
C. $\{0, \pi\}$
D. $\{0, \pi,-\pi\}$

Answer: B
10. The point on the curve $6 y=4 x^{3}-3 x^{2}$, the tangent at which makes an equal angle with the coordinate axes is
A. $\left(1,-\frac{1}{6}\right)$
B. $\left(-1,-\frac{7}{6}\right)$
C. $\left(-\frac{1}{2},-\frac{5}{24}\right)$
D. $\left(\frac{1}{2},-\frac{1}{24}\right)$

Answer: C
11. Let $\int \frac{d x}{\sqrt{x^{2}+1}-x}=f(x)+C$ such that
$f(0)=0$ and C is the constant of integration,
then the value of $f(1)$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}}+\frac{1}{2} \ln (1+\sqrt{2}) \\
& \text { B. } \frac{1}{2}+\frac{1}{\sqrt{2}} \ln (1+\sqrt{2}) \\
& \text { C. } \frac{1}{2}+\frac{1}{2} \ln \sqrt{2}+1 \\
& \text { D. } \frac{1}{\sqrt{2}}+\frac{1}{2}(1+\ln (1+\sqrt{2}))
\end{aligned}
$$

12. The solution of the differential equation
$x \frac{d y}{d x}=y \ln \left(\frac{y^{2}}{x^{2}}\right)$ is (where, c is an arbitrary
constant)
A. $y=x \cdot e^{c x+1}$
B. $y=x \cdot e^{c x-1}$
C. $y=x^{2} \cdot e^{c x+1}$
D. $y=x \cdot e^{c x^{2}+\frac{1}{2}}$

Answer: D

D Watch Video Solution

13. Let P be the image of the point $(3,1,7)$ with
respect to the plane $x-y+z=3$. The equation of the plane passing through P and parallel to $x-2 y+3 z=7$ is
A. $x-2 y+3 z=2$
B. $2 x-4 y+6 z=7$
C. $x+2 y-6 z+2=0$

$$
\text { D. } x-2 y+3 z+2=0
$$

Answer: D

D Watch Video Solution

14. A person goes to the office either by a car, or scooter, or bus, the probability of which being $\frac{2}{7}, \frac{3}{7}, \frac{2}{7}$ respectively. The probability that he reaches office late if he takes a car, or scooter, or bus is $\frac{2}{9}, \frac{1}{9}, \frac{4}{9}$ respectively. If he reaches office in time, the probability that he
travelled by car is k, then the value of $24 k+7$
is equal to
A. 7
B. 14
C. $\frac{21}{2}$
D. $\frac{31}{2}$

Answer: B
(Watch Video Solution
15. The solution of the system of equations
$x+(\cos \alpha) y=1$ and $(\cos \alpha) x+4 y=2$
satisfy $x \geq \frac{4}{5}$ and $y \leq \frac{1}{2}$, then the value of α can lie in the inverval

$$
\begin{aligned}
& \text { A. } \alpha \in\left[\frac{\pi}{4}, \frac{\pi}{3}\right] \\
& \text { B. } \alpha \in\left[0, \frac{\pi}{6}\right] \\
& \text { C. } \alpha \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right] \\
& \text { D. } \alpha \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right]
\end{aligned}
$$

Answer: D

16. $\sum_{r=0}^{n}\left(\frac{r+2}{r+1}\right) \cdot{ }^{n} C_{r}$ is equal to :
A. $\frac{2^{n}(n+2)-1}{n+1}$
B. $\frac{2^{n}(n+1)-1}{n+1}$
C. $\frac{2^{n}(n+4)-1}{n+1}$
D. $\frac{2^{n}(n+3)-1}{n+1}$

Answer: D

17. If the complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate of each other, then the number of values of x in the inverval $\left[0,2 \pi\right.$) is equal to (where, $i^{2}=-1$)
A. 0
B. 1
C. 2
D. 3

Answer: A
18. A variable line through the point $\left(\frac{6}{5}, \frac{6}{5}\right)$ cuts the coordinate axes at the points A and B respectively. If the point P divides $A B$ internally in the ratio $2: 1$, then the equation of the locus of P is
A. $5 x y=(2 x+y)$

$$
\text { B. } 5 x y=2(2 x+y)
$$

C. $5 x y=(x+2 y)$
D. $5 x y=2(x+2 y)$

Answer: B

- Watch Video Solution

19. The value of $\tan 63^{\circ}-\cot 63^{\circ}$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{5}-1}{\sqrt{5}+1} \sqrt{10+2 \sqrt{5}} \\
& \text { B. } \frac{2}{\sqrt{5}+1} \sqrt{10+2 \sqrt{5}} \\
& \text { C. } \frac{\sqrt{5}-1}{4} \sqrt{10-2 \sqrt{5}} \\
& \text { D. } \frac{\sqrt{5}-1}{4} \sqrt{10+2 \sqrt{5}}
\end{aligned}
$$

20. The locus of a point which moves such that
the difference of its distances from the points
$(5,0)$ and $(-5,0)$ is 6 units is a conic, whose length of the latus rectum (in units) is equal to
A. 4
B. $\frac{16}{3}$
C. 8
D. $\frac{32}{3}$

Answer: D

D Watch Video Solution

21. If the lengths of the sides of a right- angled
triangle $A B C$, right angled at C, are in arithmetic progression, then the value of $5(\sin A+\sin B)$ is
22. If $f(0)=0, f(3)=3$ and $f^{\prime}(3)=4$, then
the value of $\int_{0}^{1} x f^{\prime \prime}(3 x) d x$ is equal to

- Watch Video Solution

23. The minimum value of x which satisfies the inequality $\sin ^{-1} x \geq \cos ^{-1} x$ is λ, then the value of 2λ is (use $\sqrt{2}=1.41$)

- Watch Video Solution

24. Let \vec{a} be a unit vector coplanar with $\hat{i}-\hat{j}+2 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ such that \vec{a} is perpendicular to $\hat{i}-2 \hat{j}+\hat{k}$. If the projecton of \vec{a} along $\hat{i}-\hat{j}+2 \hat{k}$ is λ, then the value of $\frac{1}{\lambda^{2}}$ is equal to

- Watch Video Solution

25. A tangent and a normal are drawn at the point $\mathrm{P}(8,8)$ on the parabola $y^{2}=8 x$ which cuts the axis of the parabola at the points A
and B respectively. If the centre of the circle
through P, A and B is C, then the sum f $\sin (\angle P C B)$ and $\cot (\angle P C B)$ is equal to
