

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 53

Mathematics

1. Let $A=ig[a_{ij}ig]$ be a square matrix of order 3 and $B=ig[b_{ij}ig]$ be a matrix such that $b_{ij}=2^{i-j}a_{ij}$ for $1\leq i,j\leq 3,\,orall i,j\in N.$ If the determinant of A is same as its order, then the value of $\left| \left(B^T \right)^{-1} \right|$ is

A.
$$\frac{1}{3}$$

B. 3

C. 9

D.
$$\frac{1}{27}$$

Answer: A

2. A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. The total number of ways in which he can make the predictions, so that exactly 10 predictions are correct, is equal to

A. .
20
 $C_{10}.2^{10}$

- B. . 20 C_{10} . 3^{20}
- $\mathsf{C..}^{20} \ C_{10}.3^{01}$

D. . 20 C_{10} . 5^{20}

Answer: A

3. The quadratic equation whose roots are the arithmetic mean and the harmonic mean of the roots of the equation $x^2 + 7x - 1 = 0$ is

A.
$$14x^2 + 14x - 45 = 0$$

B.
$$45x^2 - 14x + 14 = 0$$

 $\mathsf{C}.\,14x^2 + 45x - 14 = 0$

 $\mathsf{D}.\,45x^2 + 14x - 45 = 0$

Answer: C

4. If
$$a+b+c=3$$
 and $a>0, b>0, c>0$
then the greatest value of $a^2b^2c^2$ is

A.
$$\frac{3^{10}2^4}{7^7}$$

B. $\frac{3^92^4}{7^7}$
C. $\frac{3^82^4}{7^7}$
D. $\frac{3^92^3}{7^6}$

Answer: A

5. The point at which the line segment joining A(1, 1) and B (5, 5) subtends an obtuse angle is

A. (7, 7)

B. (0, 5)

C. (2, 4)

D. (1, 5)

Answer: C

6. The average weight of students in a class of 35 students is 40 kg. If the weight of the teacher is included, then the average raises by $\frac{1}{3}$ kg. The weight of the teacher is

A. 40.5 kg

B. 50 kg

C. 41 kg

D. 52 kg

Answer: D

Watch Video Solution

7. Two straight roads OA and OB intersect at O. A tower is situated within the angle formed by them and subtends angles of 45° and 30° at the points A and B where the roads are nearest to it. If

OA = 400 meters and

OB = 300 meters, than the height of the tower

is

- A. $250\sqrt{2}$ meters
- B. 500 meters
- C. $50\sqrt{14}$ meters
- D. $100\sqrt{7}$ meters

Answer: C

equal to

A. 1 B. $\frac{1}{2}$ C. -1D. $-\frac{1}{2}$

Answer: D

9. The range of the function $f(x) = \sin^{-1}\left[x^2 - \frac{1}{3}\right] - \cos^{-1}\left[x^2 + \frac{2}{-1}\right]$ is
(where, [x] represents the greatest integer
value of x)

- A. $[\,-\pi,0]$
- B. $\{ -\pi, 0 \}$
- C. $\{0, \pi\}$
- D. $\{0, \pi, -\pi\}$

Answer: B

10. The point on the curve $6y = 4x^3 - 3x^2$, the tangent at which makes an equal angle with the coordinate axes is

A.
$$\left(1, -\frac{1}{6}\right)$$

B. $\left(-1, -\frac{7}{6}\right)$
C. $\left(-\frac{1}{2}, -\frac{5}{24}\right)$
D. $\left(\frac{1}{2}, -\frac{1}{24}\right)$

Answer: C

11. Let
$$\int \frac{dx}{\sqrt{x^2+1}-x} = f(x)+C$$
 such that $f(0)=0$ and C is the constant of integration, then the value of $f(1)$ is

A.
$$\frac{1}{\sqrt{2}} + \frac{1}{2}\ln(1+\sqrt{2})$$

B. $\frac{1}{2} + \frac{1}{\sqrt{2}}\ln(1+\sqrt{2})$
C. $\frac{1}{2} + \frac{1}{2}\ln\sqrt{2} + 1$
D. $\frac{1}{\sqrt{2}} + \frac{1}{2}(1+\ln(1+\sqrt{2}))$

Answer: D

Watch Video Solution

12. The solution of the differential equation

$$xrac{dy}{dx}=y\ln\!\left(rac{y^2}{x^2}
ight)$$
 is (where, c is an arbitrary

constant)

A.
$$y = x$$
. e^{cx+1}
B. $y = x$. e^{cx-1}

C.
$$y=x^2$$
. e^{cx+1}

D.
$$y=x.~e^{cx^2+rac{1}{2}}$$

Answer: D

13. Let P be the image of the point (3, 1, 7) with respect to the plane x - y + z = 3. The equation of the plane passing through P and parallel to x - 2y + 3z = 7 is

A.
$$x-2y+3z=2$$

B. 2x - 4y + 6z = 7

C. x + 2y - 6z + 2 = 0

D.
$$x-2y+3z+2=0$$

Answer: D

Watch Video Solution

14. A person goes to the office either by a car, or scooter, or bus, the probability of which being $\frac{2}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ respectively. The probability that he reaches office late if he takes a car, or scooter, or bus is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ respectively. If he reaches office in time, the probability that he travelled by car is k, then the value of 24k+7

is equal to

A. 7

B. 14

C.
$$\frac{21}{2}$$

D. $\frac{31}{2}$

Answer: B

Watch Video Solution

15. The solution of the system of equations

 $x+(\coslpha)y=1$ and $(\coslpha)x+4y=2$ satisfy $x\geq rac{4}{5}$ and $y\leq rac{1}{2}$, then the value of lpha can lie in the inverval

$$egin{aligned} \mathsf{A}.\,lpha &\in \left[rac{\pi}{4},rac{\pi}{3}
ight] \ \mathsf{B}.\,lpha &\in \left[0,rac{\pi}{6}
ight] \ \mathsf{C}.\,lpha &\in \left[rac{\pi}{6},rac{\pi}{3}
ight] \ \mathsf{D}.\,lpha &\in \left[rac{\pi}{3},rac{\pi}{2}
ight] \end{aligned}$$

Answer: D

Walth VILLO Solution

16.
$$\sum_{r=0}^{n} \left(\frac{r+2}{r+1}\right) \cdot {}^{n}C_{r}$$
 is equal to a
A. $\frac{2^{n}(n+2)-1}{n+1}$
B. $\frac{2^{n}(n+1)-1}{n+1}$
C. $\frac{2^{n}(n+4)-1}{n+1}$
D. $\frac{2^{n}(n+3)-1}{n+1}$

Answer: D

O Watch Video Solution

17. If the complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate of each other, then the number of values of x in the inverval $[0, 2\pi)$ is equal to (where, $i^2 = -1$)

A. 0

B. 1

C. 2

D. 3

Answer: A

18. A variable line through the point $\left(\frac{6}{5}, \frac{6}{5}\right)$ cuts the coordinate axes at the points A and B respectively. If the point P divides AB internally in the ratio 2:1, then the equation of the locus of P is

A.
$$5xy = (2x + y)$$

B.
$$5xy = 2(2x+y)$$

$$\mathsf{C.}\,5xy=(x+2y)$$

D.
$$5xy=2(x+2y)$$

Answer: B

19. The value of $an 63^\circ - \cot 63^\circ$ is equal to

A.
$$\frac{\sqrt{5}-1}{\sqrt{5}+1}\sqrt{10+2\sqrt{5}}$$
B.
$$\frac{2}{\sqrt{5}+1}\sqrt{10+2\sqrt{5}}$$
C.
$$\frac{\sqrt{5}-1}{4}\sqrt{10-2\sqrt{5}}$$
D.
$$\frac{\sqrt{5}-1}{4}\sqrt{10+2\sqrt{5}}$$

Answer: A

20. The locus of a point which moves such that the difference of its distances from the points (5, 0) and (-5, 0) is 6 units is a conic, whose length of the latus rectum (in units) is equal to

A. 4
B.
$$\frac{16}{3}$$

C. 8

Answer: D

Watch Video Solution

21. If the lengths of the sides of a right- angled triangle ABC, right angled at C, are in arithmetic progression, then the value of $5(\sin A + \sin B)$ is

Watch Video Solution

22. If f(0) = 0, f(3) = 3 and f'(3) = 4, then the value of $\int_0^1 x f''(3x) dx$ is equal to

Watch Video Solution

23. The minimum value of x which satisfies the inequality $\sin^{-1}x \ge \cos^{-1}x$ is λ , then the value of 2λ is (use $\sqrt{2} = 1.41$)

Watch Video Solution

24. Let \overrightarrow{a} be a unit vector coplanar with $\hat{i} - \hat{j} + 2\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ such that \overrightarrow{a} is perpendicular to $\hat{i} - 2\hat{j} + \hat{k}$. If the projecton of \overrightarrow{a} along $\hat{i} - \hat{j} + 2\hat{k}$ is λ , then the value of $\frac{1}{\lambda^2}$ is equal to

Watch Video Solution

25. A tangent and a normal are drawn at the point P(8, 8) on the parabola $y^2=8x$ which cuts the axis of the parabola at the points A

and B respectively. If the centre of the circle through P, A and B is C, then the sum f $\sin(\angle PCB)$ and $\cot(\angle PCB)$ is equal to

Watch Video Solution