

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 55

Mathematics

(where, C_r denotes $\cdot^n C_r$)

A. 0

B. $2^{n-2}\gamma$

C. $n^2 2^{n-2} \gamma$

D. ngamma`

Answer: D

Watch Video Solution

2. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & \lambda & -2 \\ 1 & 3 & -3 \end{bmatrix}$$
 be the adjoint matrix of matrix B such that $|B| = 9$, then the value of λ is equal to

B.
$$\frac{-77}{4}$$

C. $\frac{23}{2}$
D. $\frac{-39}{2}$

Answer: B

Watch Video Solution

4. Let lpha and eta are two positive roots of $x^2-2ax+ab=0$ where

0 < b < a, then the value of $S_n = 1 + 2 igg(rac{b}{a} igg) + 3 igg(rac{b}{a} igg)^2 + \ldots + (n) igg(rac{b}{a} igg)^{n-1}, \, orall n \in N$

cannot exceed

A.
$$\frac{\alpha}{\beta}$$

B. $\left|\frac{\alpha+\beta}{\alpha-\beta}\right|$

$$C. \left| \frac{\beta}{\alpha} \right|$$

$$D. \left(\frac{\alpha + \beta}{\alpha - \beta} \right)^4$$

Answer: D

5. If
$$\left(x^4 + 2xi
ight) - \left(3x^2 + yi
ight) = (3 - 5i) + (1 + 2yi)$$

then the number of ordered pairs (x, y) is/are equal to

$$ig\{ orall x, y \in R ext{ and } i^2 = \ -1 ig\}$$

A. 0

B. 1

C. 2

D. 3

Answer: C

6. A stationary balloon is observed from three points A, B and C on the plane ground and is found point is 60° . If $\angle ABC = 30^{\circ}$ and AC = 5 meters, then the height of the balloon from the ground is

Answer: A

Watch Video Solution

7. The number of solutions of the equation $\sin^{-1}x = (\sin x)^{-1}$ is/are

A. one

B. two

C. three

D. zero

Answer: B

Watch Video Solution

8. The mean of n observation is \overline{X} . If the first observation is increased by

 1^2 , second by 2^2 and so on, then the new mean is

A.
$$\overline{X} + n \frac{(n+1)(2n+1)}{6}$$

B. $\overline{X} + \frac{(n+1)(2n+1)}{6}$
C. $\overline{X} + \frac{n+1}{2}$
D. $\overline{X} + \frac{(n+1)}{(4)}$

Answer: B

9. If the normal at P(18, 12) to the parabola $y^2 = 8x$ cuts it again at Q, then the equation of the normal at point Q on the parabola $y^2 = 8x$ is

A. 27y = 99x - 2058

B. 27y = 99x + 3058

C. 27y = -99x - 3058

D. None of these

Answer: A

Watch Video Solution

10. If $f \colon R o R$ is a function, then f is

A. continuous for every real x

B. discontinuous only at x = 0

C. discontinuous only at integral values of x

D. continuous only at x = 0

11. The possible value of the ordered triplet (a, b, c) such that the function

 $f(x)=x^3+ax^2+bx+c$ is a monotonic function is

- A. (2, 1, 3)
- B. (1, -1, 3)
- C.(2, 2, 4)
- D. (2, -2, 1)

Answer: C

A.
$$\left(\frac{9}{2}, -\frac{5}{2}\right)$$

B. $\left(\frac{9}{2}, \frac{5}{2}\right)$
C. $\left(-\frac{5}{2}, -\frac{9}{2}\right)$
D. $\left(\frac{5}{2}, -\frac{9}{2}\right)$

Answer: B

13. The solution of the differential equation $rac{dy}{dx} = rac{y^2 + x \ln x}{2xy}$ is (where,

c is the constant of integration)

A.
$$2x^2 = y(\ln x)^2 + 2cy$$

B. $2y^2 = x(\ln x)^2 + 2cx$
C. $x^2 = y(\ln m)^2 + c$
D. $2y^2 = \frac{x}{y}(\ln x)^2 + cx$

Answer: B

14. The value of $\int \sin^3 x \sqrt{\cos x} dx$ is equal to (where, c is the constant of integration)

A.
$$\frac{2}{3}(\cos x)^{\frac{3}{2}} + \frac{2}{7}(\cos x)^{\frac{7}{2}} + c$$

B. $-\frac{2}{3}(\cos x)^{\frac{3}{2}} + \frac{2}{7}(\cos x)^{\frac{7}{2}} + c$
C. $\left(-\frac{2}{3}\right)(\cos x)^{3} + \frac{2}{5}\left(\cos x^{\frac{5}{2}}\right) + c$
D. $\frac{3}{2}(\cos x)^{\frac{3}{2}} + \frac{5}{2}(\cos x)^{\frac{7}{2}} + c$

Answer: B

Watch Video Solution

15. A random variable X follows binomial probability distribution with probability P(X), with mean as 2, probability of success as p and probability of failure as q such that p + q = 1. If $\Sigma X^2 P(X) = \frac{28}{5}$, then the probability of exactly 2 success is

A.
$$\frac{3 \times 2^{14}}{5^{10}}$$

B. $\frac{3^2 \times 2^{18}}{5^9}$
C. $3 \times \left(\frac{2}{5}\right)^{10}$
D. $45 \times \left(\frac{2}{5}\right)^9$

Answer: B

Watch Video Solution

16. Equation of the plane passing through the point (1, -1, 3), parallel to the vector $\hat{i} + 2\hat{j} + 4\hat{k}$ and perependicular to the plane x - 2y + z = 6 is given by ax + by + cz + 8 = 0, then the value of 2a - 5b + 7c is equal to

A. 32

B. 31

C.
$$-\frac{184}{5}$$

D. $\frac{72}{5}$

17. If the system of equations x + y + z = 6, $x + 2y + \lambda z = 10$ and $x + 2y + 3z = \mu$ has infinite solutions, then the value of $\lambda + 2\mu$ is equal to A. 20 B. 22 C. 23 D. 25

Answer: C

18. The number of five digit numbers that contains 7 exactly once is equal

to

A. $41(9^3)$

B. $37(9^3)$

 $C.7(9^4)$

D. $41(9^4)$

Answer: A

Watch Video Solution

19. The points (-2, -1), (1, 0), (4, 3) and (1, 2) are

A. collinear

B. concyclic

C. the vertices of a parallelogram

D. the vertices of a rectangle

20. The value of a such that the area bounded by the curve $y = x^2 + 2ax + 3a^2$, the coordinate axes and the line x = 1. The coordinate axes and the line x = 1. Attains its least value is equal to

Answer: B

21. Number of common points to the curves $C_1\{(-1 + 2\cos \alpha, 2\sin \alpha)\}$

and $C_2(4 + 3\sin\theta, 3\cos\theta)$ is/are equal to

22. If the magnitude of the projection of the vector $\hat{i} - \hat{j} + 2\hat{k}$ on the vector perpendicular to the plane containing the vectors $2\hat{i}0\hat{j} + 3\hat{k}$ and $\hat{i} - \hat{j} - 2\hat{k}$ is k, then the value of $\frac{1}{k^2}$ is equal to

Watch Video Solution

23. The value of
$$\int_0^2 rac{(x^2-2x+4) \sin(x-1)}{2x^2-4x+5} dx$$
 is equal to

Watch Video Solution

24. If $f\!:\!R o R$ is a function such that $f(5x)+f(5x+1)+f(5x+2)=0,\ orall x\in R,$ then the period of f(x) is

25. If $0<lpha,eta<\pi$ and $\coslpha+\coseta-\cos(lpha+eta)=rac{3}{2}$, then the value

of $\sqrt{3}\sinlpha+\coslpha$ is equal to