©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 56

Mathematics

1. The ratio of the coefficient of x^{15} to the
term independent of x in the expansion of
$\left(X^{2}+\frac{2}{x}\right)^{15}$ is
A. $1: 8$
B. 1: 12
C. $1: 16$
D. 1:32

Answer: D

D Watch Video Solution

2. Consider
a
function
$g(x)=f(x-2), \forall x \in R$,
$f(x)=\left\{\begin{array}{lll}\frac{1}{|x|} & : & |x| \geq 1 \\ a x^{2}+b & : & |x|<1\end{array}\right.$.
If $g(x)$ is
continuous as well as differentiable for all x, then

$$
\begin{aligned}
& \text { A. } a=\frac{-1}{2}, b=\frac{3}{2} \\
& \text { B. } a=\frac{1}{2}, b=\frac{3}{2} \\
& \text { C. } a=\frac{-1}{2}, b=\frac{-3}{2}
\end{aligned}
$$

D. None of these

Answer: A
3. The value of the integral
$I=\int \frac{d x}{\sqrt{1+\sin x}}, \forall x \in\left[0, \frac{\pi}{2}\right]$ is equal to
$k \ln \left(\tan \left(\frac{x}{4}+\frac{\pi}{8}\right)\right)+c$, then the value of
$k \sqrt{2}$ is equal to (where, c is the constant of integration)
A. $\sqrt{2}$
B. $\frac{1}{2}$
C. 1
D. $2 \sqrt{2}$

Answer: C
4. The sum of the infinite series
$\frac{1}{3}+\frac{3}{3.7}+\frac{5}{3.7 .11}+\frac{7}{3.7 \cdot 11.15}+\ldots \ldots \ldots \ldots$. is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{6} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

5. If p and q are two logical statements, then
$\sim(p \vee q) \rightarrow(p \rightarrow q)$ is equivalent to
A. $p \wedge q$
B. $p \rightarrow(p \vee q)$
C. $p \vee q$
D. $(p \vee q) \leftrightarrow(p \wedge q)$

Answer: B
6. A tower subtends angles $\alpha, 2 \alpha$ and 3α respectively at points, A, B and C (all points lying on the same side on a horizontal line through the foot of the tower), then the value of $\frac{A B}{B C}$ is equal to
A. $1+2 \cos 2 \alpha$
B. $1-2 \cos 2 \alpha$
C. $1+3 \cos 2 \alpha$
D. $1-3 \cos 2 \alpha$

- Watch Video Solution

7. If $\cos ^{-1}|\sin x| \geq \sin ^{-1}|\sin x|$, then the number of integral values of x in the interval $x \in[0,3 \pi]$ are
A. 7
B. 6
C. 4
D. 5

Answer: D

D Watch Video Solution

8. The number of ways in which we can put 5
different balls in 5 different boxes such that
atmost three boxes are empty, is equal to
A. $5^{5}+5$
B. $5^{5}-10$
C. $5^{5}-5$
D. $5^{5}-4^{5}$

- Watch Video Solution

9. If the equation $x^{3}-6 x^{2}+9 x+\lambda=0$ has exactly one root in (1, 3), then λ belongs to the interval
A. $(-6,-3)$
B. $(-4,0)$
C. ($-2,2$)
D. $(-1,3)$

Answer: B

D Watch Video Solution

10. Let $a_{n}=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 n x}{1-\cos 2 x} d x$, then $a_{1}, a_{2}, a_{2}, \ldots \ldots \ldots$ are in
A. Arithmetic Progression
B. Geometric Progression
C. Harmonic Progression
D. Arithmetic Geometric Progression

- Watch Video Solution

11. The solution of the differential equation
$\frac{d y}{d x}=e^{y}\left(\frac{1}{2 x^{2}}+1\right),(\forall x>0)$
$\lambda x e^{-y}=1-2 x^{2}$ (where c is an arbitrary
constant). Then, the value of λ is equal to
A. 2
B. 4
C. $\frac{1}{2}$

D. $\frac{1}{4}$

Answer: A

D Watch Video Solution

12. If the area bounded by the parabola $y=2-x^{2}$ and the line $y=-x$ is $\frac{k}{2}$ sq. units, then the value of $2 k$ is equal to
A. 9
B. 27
C. 18
D. 32

Answer: C

D Watch Video Solution

13. Consider three square matrices A, B and C

$$
\begin{aligned}
& \text { of order } 3 \text { such that } \\
& A^{T}=A-2 B \text { and } B^{T}=B-4 C \text {, then the }
\end{aligned}
$$

incorrect option is

A. $|A|=0$
B. $|B|=0$
C. $|C|=0$
D. $B=2 C$

Answer: A

D Watch Video Solution

14. The tangent to the circle $x^{2}+y^{2}=5$ at the point $(1,-2)$ also touches the circle $x^{2}+y^{2}-8 x+6 y+20=0$ at the point
A. $(2,1)$
B. $(-3,0)$
C. $(-1,-1)$
D. $(3,-1)$

Answer: D

D Watch Video Solution

15. A line L passing through $(1,2,3)$ and perpendicular to the
line

$$
L_{1}: \frac{x-1}{-2}=\frac{y+1}{3}=\frac{z-5}{4} \quad \text { is } \quad \text { also }
$$

intersecting the line L_{1}. If the line L intersects
the plane $2 x+y+z+6=0$ at point (α, β, γ), then the value of $2020 \alpha+\beta+2 \gamma$ is equal to
A. 2058
B. 78
C. 28
D. -4012

Answer: C

16. Probability that A will pass the exam is $\frac{1}{4}, \mathrm{~B}$ will pass the exam is $\frac{2}{5}$ and C will pass the exam is $\frac{2}{3}$. The probability that exactly one of them will pass th exam is

> A. $\frac{2}{5}$
> B. $\frac{3}{20}$
> C. $\frac{9}{20}$
> D. $\frac{4}{5}$

Watch Video Solution

17. The coordinate axes is rotated and shifted in such a way that the $\mathrm{IV}^{\text {th }}$ quadrant direction of line $4 x+3 y-35=0$ becomes that new positive x - axis direction and the $\mathrm{I}^{\text {st }}$ quadrant direction of line $3 x-4 y+5=0$ becomes the new positive y - axis direction. If origin as per old coordinate system is O , then according to the new coordinate system, the coordinates of O are
A. $(1,7)$
B. $(-1,7)$
C. $(1,-7)$
D. $(7,-1)$

Answer: C

- Watch Video Solution

18.

Let
$P=\left[\begin{array}{c}2 \alpha \\ 5 \\ -3 \alpha^{2}\end{array}\right]$ and $Q=\left[\begin{array}{lll}2 l & -m & 5 n\end{array}\right]$ are
two matrices, where $l, m, n, \alpha \in R$, then the value of determinant $P Q$ is equal to
A. 0
B. -1
C. 2
D. not possible

Answer: A
(Watch Video Solution
19. Let S and S^{\prime} are the foci of the ellipse $x=3+5 \cos \theta, y=-2+4 \sin \theta$. If B is one of the ends of one of the latus rectum, then
the area (in sq. units) of the triangle BSS' is
equal to
A. $\frac{24}{5}$
B. $\frac{48}{5}$
C. $\frac{12}{5}$
D. $\frac{64}{5}$

Answer: B

- Watch Video Solution

20. For a complex number
$Z,|Z|=1$ and $\arg (Z)=\theta$.
$(Z)\left(Z^{2}\right)\left(Z^{3}\right) \ldots\left(Z^{n}\right)=1$, then the value of θ
is
A. $\frac{4 m \pi}{n(n+1)}, m \in I$
B. $\frac{2 m \pi}{n(n+1)}, m \in I$
C. $\frac{m \pi}{n(n+1)}, m \in I$
D. None of these

Answer: A

- Watch Video Solution

21. The value of $\lim _{x \rightarrow 0} \frac{\ln (10-9 \cos 2 x)}{\ln ^{2}(\sin 3 x+1)}$ is equal to

D Watch Video Solution

22. Consider a parallelogram constructed on
the
$\vec{A}=5 \vec{p}+2 \vec{q}$ and $\vec{B}=\vec{p}-3 \vec{q}$.
$|\vec{p}|=2,|\vec{q}|=5$, the angle between \vec{p} and
\vec{q} is $\frac{\pi}{3}$ and the length of the smallest diagonal of the parallelogram is k units, then the value of k^{2} is equal to

- Watch Video Solution

23. If the line $y=m x+c$ touches the parabola $y^{2}=12(x+3)$ exactly for one value of $m(m>0)$, then the value of $\frac{c+m}{c-m}$ is equal to

Watch Video Solution

24. The sum of all the values of x between 0 and 4π which satisfy the equation $\sin x \sqrt{8 \cos ^{2} x}=1$ is $k \pi$, then the value of $\frac{k}{5}$ is equal to

- Watch Video Solution

25. If the value of the integral
$I=\int_{0}^{1} \frac{d x}{x+\sqrt{1-x^{2}}}$ is equal to $\frac{\pi}{k}$, then the
value of k is equal to
(Watch Video Solution
