

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 56

Mathematics

1. The ratio of the coefficient of x^{15} to the

term independent of x in the expansion of

$$\left(X^2+rac{2}{x}
ight)^{15}$$
 is

A. 1:8

B. 1:12

C. 1 : 16

D. 1:32

Answer: D

Watch Video Solution

$$f(x)=egin{cases} rac{1}{|x|}&:\ |x|\geq 1\ ax^2+b&:\ |x|<1 \end{cases}$$
 . If $g(x)$ is continuous as well as differentiable for all x,

then

A.
$$a=rac{-1}{2}, b=rac{3}{2}$$

B. $a=rac{1}{2}, b=rac{3}{2}$
C. $a=rac{-1}{2}, b=rac{-3}{2}$

D. None of these

Answer: A

3. The value of the integral
$$I = \int \frac{dx}{\sqrt{1 + \sin x}}, \ \forall x \in \left[0, \frac{\pi}{2}\right]$$
 is equal to $k \ln\left(\tan\left(\frac{x}{4} + \frac{\pi}{8}\right)\right) + c$, then the value of $k\sqrt{2}$ is equal to (where, c is the constant of integration)

A.
$$\sqrt{2}$$

B. $\frac{1}{2}$
C. 1

D. $2\sqrt{2}$

Answer: C

Watch Video Solution

A.
$$\frac{1}{2}$$

B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{4}$

Answer: A

Answer: B

6. A tower subtends angles α , 2α and 3α respectively at points, A, B and C (all points lying on the same side on a horizontal line through the foot of the tower), then the value of $\frac{AB}{BC}$ is equal to

A. $1+2\cos 2\alpha$

B. $1-2\cos 2\alpha$

 $C.1+3\cos 2lpha$

D. $1 - 3\cos 2\alpha$

Answer: A

7. If $\cos^{-1}|\sin x| \geq \sin^{-1}|\sin x|$, then the number of integral values of x in the interval $x \in [0, 3\pi]$ are

A. 7

B. 6

C. 4

Answer: D

8. The number of ways in which we can put 5 different balls in 5 different boxes such that atmost three boxes are empty, is equal to

A.
$$5^5 + 5$$

- $B.5^{5} 10$
- $C.5^{5} 5$

 $\mathsf{D.}\,5^5-4^5$

Answer: C

9. If the equation $x^3 - 6x^2 + 9x + \lambda = 0$ has exactly one root in (1, 3), then λ belongs to the interval

A.
$$(\,-6,\,-3)$$

B.
$$(-4, 0)$$

C.
$$(-2, 2)$$

D. (-1, 3)

Answer: B

10. Let
$$a_n=\int_0^{rac{\pi}{2}}rac{1-\cos 2nx}{1-\cos 2x}dx$$
, then

 $a_1,a_2,a_2,\ldots\ldots$ are in

A. Arithmetic Progression

- **B.** Geometric Progression
- C. Harmonic Progression
- D. Arithmetic Geometric Progression

Answer: A

11. The solution of the differential equation $\frac{dy}{dx} = e^y \left(\frac{1}{2x^2} + 1\right), (\forall x > 0) \qquad \text{is}$ $\lambda x e^{-y} = 1 - 2x^2 \quad \text{(where c is an arbitrary}$ constant). Then, the value of λ is equal to

A. 2

B. 4

$$\mathsf{C}.\,\frac{1}{2}$$

D. $\frac{1}{4}$

Answer: A

Watch Video Solution

12. If the area bounded by the parabola $y = 2 - x^2$ and the line y = -x is $\frac{k}{2}$ sq. units, then the value of 2k is equal to

B. 27

A. 9

C. 18

D. 32

Answer: C

Watch Video Solution

13. Consider three square matrices A, B and C

of order 3 such that $A^T = A - 2B$ and $B^T = B - 4C$, then the incorrect option is

A.
$$|A|=0$$

$$\mathsf{B}.\left|B\right|=0$$

$$C. |C| = 0$$

$$\mathsf{D}.\,B=2C$$

Answer: A

Watch Video Solution

14. The tangent to the circle $x^2+y^2=5$ at the point $(1,\ -2)$ also touches the circle $x^2+y^2-8x+6y+20=0$ at the point

A. (2, 1)

B. (-3, 0)

$$\mathsf{C.}\,(\,-1,\,-1)$$

D.
$$(3, -1)$$

Answer: D

Watch Video Solution

15. A line L passing through $\left(1,\,2,\,3
ight)$ and

perpendicular to the line
$$L_1: rac{x-1}{-2} = rac{y+1}{3} = rac{z-5}{4}$$
 is also

intersecting the line L_1 . If the line L intersects the plane 2x + y + z + 6 = 0 at point $(lpha, eta, \gamma)$, then the value of $2020lpha + eta + 2\gamma$ is equal to

- A. 2058
- B. 78
- C. 28
- $\mathsf{D.}-4012$

Answer: C

16. Probability that A will pass the exam is $\frac{1}{4}$, B will pass the exam is $\frac{2}{5}$ and C will pass the exam is $\frac{2}{3}$. The probability that exactly one of them will pass th exam is

A.
$$\frac{2}{5}$$

B. $\frac{3}{20}$
C. $\frac{9}{20}$
D. $\frac{4}{5}$

Answer: C

17. The coordinate axes is rotated and shifted in such a way that the $\mathrm{IV}^{\mathrm{th}}$ quadrant direction of line 4x + 3y - 35 = 0 becomes that new positive x - axis direction and the I^{st} quadrant direction of line 3x - 4y + 5 = 0 becomes the new positive y - axis direction. If origin as per old coordinate system is O, then according to the new coordinate system, the coordinates of O are

A. (1, 7)

B.
$$(-1, 7)$$

C.
$$(1, -7)$$

D.
$$(7, -1)$$

Answer: C

Watch Video Solution

18. Let
$$P = \begin{bmatrix} 2\alpha \\ 5 \\ -3\alpha^2 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 2l & -m & 5n \end{bmatrix}$ are

two matrices, where $l, m, n, lpha \in R$, then the

value of determinant PQ is equal to

A. 0

 $\mathsf{B.}-1$

C. 2

D. not possible

Answer: A

19. Let S and S' are the foci of the ellipse $x = 3 + 5\cos\theta$, $y = -2 + 4\sin\theta$. If B is one of the ends of one of the latus rectum, then the area (in sq. units) of the triangle BSS' is equal to

A.
$$\frac{24}{5}$$

B. $\frac{48}{5}$
C. $\frac{12}{5}$
D. $\frac{64}{5}$

Answer: B

20. For a complex number Z, |Z| = 1 and arg $(Z) = \theta$. If $(Z)(Z^2)(Z^3)...(Z^n) = 1$, then the value of θ is

A.
$$\displaystyle rac{4m\pi}{n(n+1)}, m \in I$$

B. $\displaystyle rac{2m\pi}{n(n+1)}, m \in I$
C. $\displaystyle rac{m\pi}{n(n+1)}, m \in I$

D. None of these

Answer: A

22. Consider a parallelogram constructed on

the

vectors

 $\overrightarrow{A} = 5\overrightarrow{p} + 2\overrightarrow{q}$ and $\overrightarrow{B} = \overrightarrow{p} - 3\overrightarrow{q}$. If $\left|\overrightarrow{p}\right| = 2, \left|\overrightarrow{q}\right| = 5$, the angle between \overrightarrow{p} and \overrightarrow{q} is $\frac{\pi}{3}$ and the length of the smallest diagonal of the parallelogram is k units, then the value of k^2 is equal to

Watch Video Solution

23. If the line y = mx + c touches the parabola $y^2 = 12(x + 3)$ exactly for one value of m(m > 0), then the value of $\frac{c+m}{c-m}$ is equal to

Watch Video Solution

value of k is equal to

Watch Video Solution