

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 59

Mathematics

- 1. Consider the matrix $A = egin{bmatrix} 3 & 1 \ -6 & -2 \end{bmatrix}$, then $(I+A)^{40}$ is equal to
 - A. $I+2^{38}A$

 $\mathsf{B}.\,I+2^{39}A$

C.
$$I + (2^{40} + 1)A$$

D.
$$I + \left(2^{40} - 1
ight)A$$

Answer: D

Watch Video Solution

2. The lines joining the origin to the points of intersection of the line 4x + 3y = 24 with the circle $(x-3)^2 + (y-4)^2 = 25$ are

A. coincident

B. perpendicular

C. equally inclined to x - axis

D. None of these

Answer: B

3. The value of the integral
$$I=\int_{0}^{rac{\pi}{2}}rac{\cos x-\sin x}{10-x^{2}+rac{\pi x}{2}}dx$$

is equal to

A.
$$\frac{\pi}{2}$$

 $\mathsf{B.}\,\pi$

C. 0

D. 4π

Answer: C

4. If
$$\sin x + \cos x = \frac{\sqrt{7}}{2}$$
, where $x \in \left[0, \frac{\pi}{4}\right]$, then the value of $\tan \frac{x}{2}$ is equal to

Answer: B

5. The equation $an^4 x - 2 \sec^2 x + a^2 = 0$ will have at least one solution, if

A. $|a| \leq 4$ B. $|a| \leq 2$ C. $|a| \leq \sqrt{3}$

D. |a| > 2

Answer: C

6. The statement ${}^{\sim}p
ightarrow (q
ightarrow p)$ is equivalent to

A.
$$p
ightarrow (p
ightarrow q)$$

$$\mathsf{B}.\,p \to (p \lor q)$$

 $\mathsf{C}.\,q o p$

D.
$$q
ightarrow (p
ightarrow q)$$

Answer: C

Watch Video Solution

7. If the standard deviation of n observation x_1, x_2, \ldots, x_n is 5 and for another set of n

observation y_1, y_2, \ldots, y_n is 4, then the

standard deviation of n observation

 $x_1-y_1, x_2-y_2, \ldots \ldots, x_n-y_n$ is

A. 1

$$\mathsf{B}.\,\frac{\sqrt{5}}{2}$$

C. 5

D. Data insufficient

Answer: D

Answer: A

9. The lenth of the portion of the common tangent to $x^2 + y^2 = 16$ and $9x^2 + 25y^2 = 225$ between the two points of contact is

A.
$$\frac{9}{4}$$
 units
B. $\frac{\sqrt{3}}{4}$ units
C. $\frac{3}{4}\sqrt{7}$ units
D. $\frac{5}{4}\sqrt{7}$ units

Answer: C

Watch Video Solution

10. The equation of the curve lying in the first quadrant, such that the portion of the x - axis cut - off between the origin and the tangent at any point P is equal to the ordinate of P, is (where, c is an arbitrary constant)

A.
$$y = ce^{rac{x}{y}}$$

B. $ye^{rac{x}{y}} = c$
C. $ye^{rac{y}{x}} = c$

D.
$$y=ce^{rac{y}{x}}$$

Answer: B

11.
$$\sum_{r=1}^{n} = \frac{r}{r^{4} + r^{2} + 1}$$
 is equal to
A.
$$\frac{n^{2} + n}{2(n^{2} + n + 1)}$$

B.
$$\frac{n^{2} + 2n}{2(n^{2} + n + 1)}$$

C.
$$\frac{2n^{2} + n}{2(n^{2} + n + 1)}$$

D.
$$\frac{n^{2} + n}{(n^{2} + n + 1)}$$

Answer: A

12. If the integral
$$I=\int\!\!e^{x^2}x^3dx=e^{x^2}f(x)+c$$
, where c is the constant of integration and $f(1)=0$, then

the value of f(2) is equal to

A. 4

B.
$$\frac{5}{2}$$

C. $\frac{3}{2}$

Answer: C

Vatch Video Solution

13. The points on the curve $y = x^2$ which are closest

to the point P(0, 1) are

A.
$$\left(\pm\sqrt{2},2
ight)$$

B. $\left(\pm\frac{1}{2},\frac{1}{4}
ight)$
C. $\left(\pm\frac{1}{\sqrt{2}},\frac{1}{2}
ight)$
D. $\left(\pm\frac{1}{4},\frac{1}{16}
ight)$

Answer: C

14. Let $\triangle OAB$ be an equilateral triangle with side length unity (O being the origin). Also, M and N being closer to A and N being clower to B. position vectors of A, B, M and N are $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{m}$ and \overrightarrow{n} respectively, then the value of \overrightarrow{m} . \overrightarrow{n} is equal to

A.
$$\frac{1}{2}$$

B. $\frac{2}{3}$
C. $\frac{13}{18}$
D. $\frac{4}{9}$

Answer: C

15. If A and B are two independent events such that $P(A) > \frac{1}{2}, P(A \cap B^{C}) = \frac{3}{25} \text{ and } P(A^{C} \cap B) = \frac{8}{25}$, then P(A) is equal to (where, A^c and B^c represent the complement of events A and B respectively)

A.
$$\frac{1}{5}$$

B. $\frac{3}{5}$
C. $\frac{3}{4}$
D. $\frac{4}{5}$

Answer: B

16. If A, B and C are square matrices of order 3 and |A| = 2, |B| = 3 and |C| = 4, then the value of $|3(adjA)BC^{-1}|$ is equal to (where, adj A represents the adjoint matrix of A)

A. 27

$$\mathsf{B}.\,\frac{27}{4}$$

07

C.
$$\frac{81}{2}$$

D. 81

Answer: D

17.
$$\Sigma_{r=0}^n (n-r) (.^n \, C_r)^2$$
 is equal to

A.
$$n^2 \left(.^{2n-1} C_n
ight)$$

B. $n^2 \left(.^{2n} C_{n-1}
ight)$
C. $n^2 \left(.^{2n-1} C_{n-1}
ight)$
D. $m^2 \left(.^{2n-2} C_n
ight)$

Answer: D

Watch Video Solution

18. For a complex number z, the equation $z^2 + (p+iq)zr + ext{ is } = 0$ has a real root (where p, q, r, s are non - zero real numbers and $i^2 = -1$), then

A.
$$pqr = r^2 + p^2 s$$

B. $prs = q^2 + r^2 p$
C. $prs = p^2 + s^2 q$
D. $pqs = s^2 + q^2 r$

Answer: D

19. The length of the normal chord which subtends an angle of $90\,^\circ$ at the vertex of the parabola $y^2=4x$ is

A. $6\sqrt{3}$ units

B. $7\sqrt{2}$ units

C. $8\sqrt{2}$ units

D. $9\sqrt{2}$ units

Answer: A

Watch Video Solution

20. Let
$$f(x) = \left\{egin{array}{ccc} rac{2^{rac{1}{x}}-1}{2^{rac{1}{x}}+1} & : & x
eq 0 \ 0 & : & x=0 \end{array}
ight.$$
 , then $f(x)$ is

A. continuous and differentiable at x = 0

B. continuous but not differentiable at x = 0

C. differentiable but not continuous at x = 0

D. none of these

Answer: D Watch Video Solution

21. If the total number of positive integral solution of $15 < x_1 + x_2 + x_3 \le 20$ is k, then the value of $\frac{k}{100}$ is equal to

22. If
$$3 \tan^{-1}\left(\frac{1}{2+\sqrt{3}}\right) - \tan^{-1} \cdot \frac{1}{3} = \tan^{-1} \cdot \frac{1}{x}$$
,

then the value of x is equal to

23. If the straight lines x + 2y = 3, 2x + 3y = 5 and $k^2x + ky = -1$ represent a triangle which is right - angled, then the value of k are k_1 and k_2 . The value of $\left|\frac{k_1 + k_2}{k_1 - k_2}\right|$ is

Watch Video Solution

24. Two lines
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1}$ intersect at a point P. If the distance of P from the plane $2x - 3y + 6z = 7$ is λ units, then the value of 49λ is equal to

Watch Video Solution

25. The area (in sq. units) bounded by $y = 2^x$ and $y = 2x - x^2$ from x = 1 to x = 2 is $k \log_2 e - l$, then the value of $\left|\frac{k}{l}\right|$ is equal to

Watch Video Solution