# © 'doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - NTA MOCK TESTS

## NTA JEE MOCK TEST 59

## Mathematics

1. Consider the matrix $A=\left[\begin{array}{cc}3 & 1 \\ -6 & -2\end{array}\right]$, then
$(I+A)^{40}$ is equal to
A. $I+2^{38} A$
B. $I+2^{39} A$
C. $I+\left(2^{40}+1\right) A$
D. $I+\left(2^{40}-1\right) A$

## Answer: D

## - Watch Video Solution

2. The lines joining the origin to the points of intersection of the line $4 x+3 y=24$ with the circle

$$
(x-3)^{2}+(y-4)^{2}=25 \text { are }
$$

A. coincident
B. perpendicular
C. equally inclined to $x$ - axis

## D. None of these

## Answer: B

## D Watch Video Solution

3. The value of the integral $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{10-x^{2}+\frac{\pi x}{2}} d x$ is equal to
A. $\frac{\pi}{2}$
B. $\pi$
C. 0
D. $4 \pi$

## Answer: C

## D Watch Video Solution

4. If $\sin x+\cos x=\frac{\sqrt{7}}{2}$, where $x \in\left[0, \frac{\pi}{4}\right]$, then the value of $\tan$. $\frac{x}{2}$ is equal to
A. $\frac{3-\sqrt{7}}{3}$
B. $\frac{\sqrt{7}-2}{3}$
C. $\frac{4-\sqrt{7}}{4}$
D. $\frac{5-\sqrt{3}}{2}$

Answer: B
5. The equation $\tan ^{4} x-2 \sec ^{2} x+a^{2}=0$ will have at least one solution, if
A. $|a| \leq 4$
B. $|a| \leq 2$
C. $|a| \leq \sqrt{3}$
D. $|a|>2$

Answer: C
6. The statement $\sim p \rightarrow(q \rightarrow p)$ is equivalent to
A. $p \rightarrow(p \rightarrow q)$
B. $p \rightarrow(p \vee q)$
C. $q \rightarrow p$
D. $q \rightarrow(p \rightarrow q)$

## Answer: C

## ( Watch Video Solution

7. If the standard deviation of $n$ observation $x_{1}, x_{2}, \ldots \ldots, x_{n}$ is 5 and for another set of n
observation $y_{1}, y_{2}, \ldots \ldots \ldots, y_{n}$ is 4 , then the
standard deviation of $n$ observation
$x_{1}-y_{1}, x_{2}-y_{2}, \ldots \ldots \ldots \ldots, x_{n}-y_{n}$ is
A. 1
B. $\frac{\sqrt{5}}{2}$
C. 5
D. Data insufficient

## Answer: D

# 8. The domain of the function <br> $$
f(x)=\log _{2}\left[1-\log _{12}\left(x^{2}-5 x+16\right)\right] \text { is }
$$ 

A. $(1,4)$
B. $(-\infty, 4]$
C. $[1, \infty)$
D. $[1,4]$

Answer: A

## D Watch Video Solution

9. The lenth of the portion of the common tangent to
$x^{2}+y^{2}=16$ and $9 x^{2}+25 y^{2}=225$ between the two points of contact is
A. $\frac{9}{4}$ units
B. $\frac{\sqrt{3}}{4}$ units
C. $\frac{3}{4} \sqrt{7}$ units
D. $\frac{5}{4} \sqrt{7}$ units

## Answer: C

10. The equation of the curve lying in the first quadrant, such that the portion of the x - axis cut - off between the origin and the tangent at any point $P$ is equal to the ordinate of $P$, is (where, $C$ is an arbitrary constant)
A. $y=c e^{\frac{x}{y}}$
B. $y e^{\frac{x}{y}}=c$
C. $y e^{\frac{y}{x}}=c$
D. $y=c e^{\frac{y}{x}}$

## Answer: B

11. $\sum_{r=1}^{n}=\frac{r}{r^{4}+r^{2}+1}$ is equal to
A. $\frac{n^{2}+n}{2\left(n^{2}+n+1\right)}$
B. $\frac{n^{2}+2 n}{2\left(n^{2}+n+1\right)}$
C. $\frac{2 n^{2}+n}{2\left(n^{2}+n+1\right)}$
D. $\frac{n^{2}+n}{\left(n^{2}+n+1\right)}$

## Answer: A

## D Watch Video Solution

12. If the integral $I=\int e^{x^{2}} x^{3} d x=e^{x^{2}} f(x)+c$, where c is the constant of integration and $f(1)=0$, then
the value of $f(2)$ is equal to
A. 4
B. $\frac{5}{2}$
C. $\frac{3}{2}$
D. 3

## Answer: C

## - Watch Video Solution

13. The points on the curve $y=x^{2}$ which are closest to the point $P(0,1)$ are
A. $( \pm \sqrt{2}, 2)$
B. $\left( \pm \frac{1}{2}, \frac{1}{4}\right)$
C. $\left( \pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$
D. $\left( \pm \frac{1}{4}, \frac{1}{16}\right)$

## Answer: C

## D Watch Video Solution

14. Let $\triangle O A B$ be an equilateral triangle with side length unity ( $O$ being the origin). Also, $M$ and $N$ being closer to A and N being clower to B . position vectors
of $\mathrm{A}, \mathrm{B}, \mathrm{M}$ and N are $\vec{a}, \vec{b}, \vec{m}$ and $\vec{n}$ respectively, then the value of $\vec{m} \cdot \vec{n}$ is equal to
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{13}{18}$
D. $\frac{4}{9}$

## Answer: C

## - Watch Video Solution

15. If $A$ and $B$ are two independent events such that $P(A)>\frac{1}{2}, P\left(A \cap B^{C}\right)=\frac{3}{25}$ and $P\left(A^{C} \cap B\right)=\frac{8}{25}$
, then $P(A)$ is equal to (where, $A^{\mathrm{c}}$ and $B^{\mathrm{c}}$ represent the complement of events $A$ and $B$ respectively)
A. $\frac{1}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{4}$
D. $\frac{4}{5}$

Answer: B

D Watch Video Solution
16. If $A, B$ and $C$ are square matrices of order 3 and $|A|=2,|B|=3$ and $|C|=4$, then the value of $\left|3(a d j A) B C^{-1}\right|$ is equal to (where, adj A represents the adjoint matrix of A)
A. 27
B. $\frac{27}{4}$
C. $\frac{81}{2}$
D. 81

Answer: D

- Watch Video Solution

17. $\Sigma_{r=0}^{n}(n-r)\left(.{ }^{n} C_{r}\right)^{2}$ is equal to

$$
\begin{aligned}
& \text { A. } n^{2}\left(\cdot{ }^{2 n-1} C_{n}\right) \\
& \text { B. } n^{2}\left(\cdot{ }^{2 n} C_{n-1}\right) \\
& \text { C. } n^{2}\left(\cdot{ }^{2 n-1} C_{n-1}\right) \\
& \text { D. } m^{2}\left(\cdot{ }^{2 n-2} C_{n}\right)
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

18. For a complex number $z$, the equation $z^{2}+(p+i q) z r+$ is $=0$ has a real root (where p, $\mathrm{q}, \mathrm{r}, \mathrm{s}$ are non-zero real numbers and $i^{2}=-1$ ), then
A. $p q r=r^{2}+p^{2} s$
B. $p r s=q^{2}+r^{2} p$
C. $p r s=p^{2}+s^{2} q$
D. $p q s=s^{2}+q^{2} r$

## Answer: D

## - Watch Video Solution

19. The length of the normal chord which subtends an angle of $90^{\circ}$ at the vertex of the parabola $y^{2}=4 x$ is
A. $6 \sqrt{3}$ units
B. $7 \sqrt{2}$ units
C. $8 \sqrt{2}$ units
D. $9 \sqrt{2}$ units

## Answer: A

## D Watch Video Solution

20. Let $f(x)=\left\{\begin{array}{lll}\frac{2^{\frac{1}{x}}-1}{2^{\frac{1}{x}}+1} & : & x \neq 0 \\ 0 & : & x=0\end{array}\right.$, then $f(x)$ is
A. continuous and differentiable at $\mathrm{x}=0$
B. continuous but not differentiable at $x=0$
C. differentiable but not continuous at $\mathrm{x}=0$
D. none of these

## Answer: D

## D Watch Video Solution

21. If the total number of positive integral solution of
$15<x_{1}+x_{2}+x_{3} \leq 20$ is k , then the value of $\frac{k}{100}$ is equal to

## D Watch Video Solution

22. If $3 \tan ^{-1}\left(\frac{1}{2+\sqrt{3}}\right)-\tan ^{-1} \cdot \frac{1}{3}=\tan ^{-1} \cdot \frac{1}{x}$,
then the value of $x$ is equal to
23. $\begin{aligned} & \text { If } \quad \text { the } \quad \text { straight } \\ & x+2 y=3,2 x+3 y=5\end{aligned}$
$x+k^{2} x+k y=-1$
represent a triangle which is right - angled, then the value of k are $k_{1}$ and $k_{2}$. The value of $\left|\frac{k_{1}+k_{2}}{k_{1}-k_{2}}\right|$ is

## D Watch Video Solution

24. Two lines $\quad \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \quad$ and $\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{1}$ intersect at a point P. If the distance of P from the plane $2 x-3 y+6 z=7$ is $\lambda$ units, then the value of $49 \lambda$ is equal to
25. The area (in sq. units) bounded by $y=2^{x}$ and $y=2 x-x^{2}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$ is
$k \log _{2} e-l$, then the value of $\left|\frac{k}{l}\right|$ is equal to

D Watch Video Solution

