©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 60

Mathematics

1. Find the coordinates the those point on the
line $3 x+2 y=5$ which are equisdistant from
the lines $4 x+3 y-7=0$ and $2 y-5=0$
A. $\left(-\frac{1}{14}, \frac{73}{28}\right)$
B. $\left(\frac{1}{14},-\frac{73}{28}\right)$
C. $\left(\frac{1}{16},-\frac{77}{32}\right)$
D. $\left(-\frac{1}{16}, \frac{77}{32}\right)$

Answer: A

D Watch Video Solution

2. A man wants to distribute 101 coins a rupee each, among his 3 sons with the condition
that no one receives more money than the
combined total of other two. The number of ways of doing this is :-

$$
\begin{aligned}
& \text { A. } .{ }^{103} C_{2}-3 .{ }^{52} C_{2} \\
& \text { B. } \frac{.^{103} C_{2}}{3} \\
& \text { C. } \frac{{ }^{103} C_{2}}{6} \\
& \text { D. }{ }^{103} C_{2}-3 .{ }^{50} C_{3}
\end{aligned}
$$

Answer: A
3. If the sum of the first 100 terms of an arithmetic progression is -1 and the sum of the even terms is 1 , then the $100^{\text {th }}$ term of the arithmetic progression is

$$
\begin{aligned}
& \text { A. } \frac{47}{25} \\
& \text { B. } \frac{149}{50} \\
& \text { C. } \frac{74}{25} \\
& \text { D. }-\frac{149}{50}
\end{aligned}
$$

Answer: C

4. The number of solutions of the equation
$\left(\log _{2} \cos \theta\right)^{2}+\log \cdot \frac{4}{\cos \theta}(16 \cos \theta)=2$ in the interval $[0,2 \pi)$ is
A. 1
B. 2
C. 3
D. 4

Answer: C
5. Find the equation of the circle whose radius
is 5and which touches the circle
$x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point (5, 5).

$$
\begin{aligned}
& \text { A. }(x-9)^{2}+(y+8)^{2}=25 \\
& \text { B. }(x-9)^{2}+(y-8)^{2}=25 \\
& \text { C. }(x+8)^{2}+(y+8)^{2}=25 \\
& \text { D. }(x+8)^{2}+(y-9)^{2}=25
\end{aligned}
$$

Answer: B

D Watch Video Solution

6. The value of the integral $\int_{-4}^{4} e^{|x|}\{x\} d x$ is equal to (where $\{$.$\} denotes the fractional$ part function)

> A. e^{4}
> B. $e^{4}+1$
> C. $\left(e^{4}-1\right)$
D. e^{2}

Answer: C

D Watch Video Solution

> 7. If $f: N \rightarrow Z \quad$ defined $f(n)=\left\{\begin{array}{lll}\frac{n-1}{2} & : & \text { if } \mathrm{n} \text { is odd } \\ \frac{-n}{2} & : & \text { if } \mathrm{n} \text { is even }\end{array}\right.$ and
$g: N \rightarrow N$ defined as $g(n)=n-(-1)^{n}$,
then fog is (where, N is the set of natural numbers and Z is the set of integers)
A. one - one and onto
B. one - one and into
C. many - one and onto
D. many - one and into

Answer: A

D Watch Video Solution
8. Which of the following is not a tautology?
A. $(p \wedge q) \rightarrow(p \vee q)$

$$
\begin{aligned}
& \text { B. } p \rightarrow(p \vee q) \\
& \text { C. } q \rightarrow(p \rightarrow q) \\
& \text { D. } p \rightarrow(p \wedge q)
\end{aligned}
$$

Answer: D

D Watch Video Solution

9.

$y=\tan ^{-1} \cdot \frac{1}{1+x+x^{2}}+\tan ^{-1} \cdot \frac{1}{x^{2}+3 x+3}$
upto $\quad+\tan ^{-1} \cdot \frac{1}{x^{2}+5 x+7}+\ldots+2 n$
terms $(\forall x \geq 0)$, then $\mathrm{y}(0)$ is
A. $\tan ^{-1}(n)$
B. $\tan ^{-1}(2 n)$
C. $2 \tan ^{-1}(n)$
D. 0

Answer: B

D Watch Video Solution

10. If the mean of a set of observations
$x_{1}, x_{2}, \ldots \ldots, x_{10}$ is 40 , then the mean of
$x_{1}+4, x_{2}+8, x_{3}+12, \ldots \ldots, x_{10}+40$ is
A. 54
B. 62
C. 38
D. 50

Answer: B

D Watch Video Solution
11. The differential equation of the curve for which the point of tangency (closer to the x axis) divides the segment of the tangent
between the coordinate axes in the ratio $1: 2$,
is
A. $x d y=2 y d x$
B. $x d y=y d x$
C. $x d y+2 y d x=0$
D. $x d y+y d x=0$

Answer: C

D Watch Video Solution
12. The locus of the centre of the circle described on any focal chord of the parabola $y^{2}=4 a x$ as the diameter is

$$
\begin{aligned}
& \text { A. } y^{2}=2 a(x+a) \\
& \text { B. } y^{2}=a(x+a) \\
& \text { C. } y^{2}=2 a(x-a) \\
& \text { D. } y^{2}=4 a(x-a)
\end{aligned}
$$

Answer: C
13. $\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=$
A. $\frac{\sin 2 x}{2}+C$
B. $-\frac{\sin 2 x}{2}+C$
C. $\cos 2 x+C$
D. $\frac{\cos x}{2}+C$

Answer: B

- Watch Video Solution

14.

Let
$f(x)=\left|\begin{array}{ccc}4 x+1 & -\cos x & -\sin x \\ 6 & 8 \sin \alpha & 0 \\ 12 \sin \alpha & 16 \sin ^{2} \alpha & 1+4 \sin \alpha\end{array}\right|$ and
$f(0)=0$. If the sum of all possible values of α
is $k \pi$ for $\alpha \in[0,2 \pi]$, then the value of k is
equal to
A. 2
B. 4
C. 6
D. 8

Answer: C

D Watch Video Solution

15. $A, B, C a n d D$ are any four points in the
space,
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$
(area of $A B C$.)
A. 2
B. $\frac{1}{2}$
C. 4

D. $\frac{1}{4}$

Answer: C

D Watch Video Solution

16. 2 dice are thrown. Suppose a random
variable X is assigned a value $2 k$, if the sum on
the dice is equal to k, then the expected value of X is
A. 10
B. 12
C. 14
D. $\frac{50}{9}$

Answer: C

D Watch Video Solution

17. The length of the perpendicular from
$\mathrm{P}(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is
A. $\frac{3 \sqrt{6}}{2}$ units
B. $\frac{6 \sqrt{3}}{5}$ units
C. $3 \sqrt{2}$ units
D. $2 \sqrt{3}$ units

Answer: A

D Watch Video Solution

18. Let there are exactly two points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose distance from (0,
$0)$ are equal to $\sqrt{\frac{a^{2}}{2}+b^{2}}$. Then, the eccentricity of the ellipse is equal to
A. $\frac{1}{2}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. None of these

Answer: C

D Watch Video Solution

19. The area (in sq. units) bounded by the
curve $|y|=|\ln | x| |$ and the coordinate axes
is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

20. The volume of a cube is increasing at the rate of $9 \mathrm{~cm}^{3} / \mathrm{sec}$. The rate (in $\mathrm{cm}^{2} / \mathrm{sec}$) at which the surface area is increasing when the edge of the cube is 9 cm , is
A. 1
B. 2
C. 3
D. 4

Answer: D

21. Let M and N are two non singular matrices
of order 3 with real entries such that
$(a d j M)=2 N \quad$ and $\quad(a d j N)=M . \quad$ If
$M N=\lambda I$, then the value the values of λ is
equal to (where, $(\operatorname{adj} X)$ represents the adjoint matrix of matrix X and I represents an identity matrix)
22. The value of $\lim _{x \rightarrow 0} \frac{\ln (2-\cos 15 x)}{\ln ^{2}(\sin 3 x+1)}$ is equal to

- Watch Video Solution

23. If the number of terms in the expansion of
$(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ is n , then the value
of $\frac{n}{25}$ is euqal to

- Watch Video Solution

24. If the function $f(x)$, defined as
$f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}} & : x \neq 0 \\ 3 & : x=0\end{array}\right.$ is
continuous at $x=0$, then the value of $\frac{b^{4}+a}{5+a}$ is equal to

- Watch Video Solution

25. Let the points A, B, C and D are represented
by complex numbers Z_{1}, Z_{2}, Z_{3} and Z_{4} respectively, If A, B and C are not collinear and
$2 Z_{1}+Z_{2}+Z_{3}-4 Z_{4}=0$, then the value of Area of $\triangle D B C$ is equal to

D Watch Video Solution

