




## **MATHS**

# **BOOKS - NTA MOCK TESTS**

# NTA JEE MOCK TEST 60

**Mathematics** 

**1.** Find the coordinates the those point on the line 3x + 2y = 5 which are equisdistant from the lines 4x + 3y - 7 = 0 and 2y - 5 = 0



#### Answer: A



**2.** A man wants to distribute 101 coins a rupee each, among his 3 sons with the condition that no one receives more money than the

combined total of other two. The number of

ways of doing this is :-

A. 
$$.^{103} C_2 - 3.^{52} C_2$$
  
B.  $\frac{.^{103} C_2}{3}$   
C.  $\frac{.^{103} C_2}{6}$   
D.  $.^{103} C_2 - 3.^{50} C_3$ 

#### Answer: A

**3.** If the sum of the first 100 terms of an arithmetic progression is -1 and the sum of the even terms is 1, then the  $100^{\text{th}}$  term of the arithmetic progression is

A. 
$$\frac{47}{25}$$
  
B.  $\frac{149}{50}$   
C.  $\frac{74}{25}$   
D.  $-\frac{149}{50}$ 

#### Answer: C



**4.** The number of solutions of the equation  $(\log_2 \cos \theta)^2 + \log \frac{4}{\cos \theta}(16 \cos \theta) = 2$  in the interval  $[0, 2\pi)$  is

A. 1

B. 2

C. 3

D. 4

#### Answer: C



5. Find the equation of the circle whose radius is 5and which touches the circle  $x^2 + y^2 - 2x - 4y - 20 = 0$  externally at the point (5, 5).

A. 
$$(x-9)^2 + (y+8)^2 = 25$$
  
B.  $(x-9)^2 + (y-8)^2 = 25$   
C.  $(x+8)^2 + (y+8)^2 = 25$   
D.  $(x+8)^2 + (y-9)^2 = 25$ 

#### Answer: B



**6.** The value of the integral  $\int_{-4}^{4} e^{|x|} \{x\} dx$  is equal to (where  $\{.\}$  denotes the fractional part function)

A. 
$$e^4$$

B. 
$$e^4 + 1$$

C. 
$$(e^4 - 1)$$

 $\mathsf{D.}\,e^2$ 

#### Answer: C

7. If 
$$f: N \to Z$$
 defined as  
 $f(n) = \begin{cases} \frac{n-1}{2} : & \text{if n is odd} \\ \frac{-n}{2} : & \text{if n is even} \end{cases}$  and  
 $g: N \to N$  defined as  $g(n) = n - (-1)^n$ ,  
then fog is (where, N is the set of natural  
numbers and Z is the set of integers)

A. one - one and onto

B. one - one and into

C. many - one and onto

D. many - one and into

Answer: A

Watch Video Solution

8. Which of the following is not a tautology?

A. 
$$(p \wedge q) o (p \lor q)$$

$$\texttt{B.} \, p \to (p \lor q)$$

C. 
$$q 
ightarrow (p 
ightarrow q)$$

D.  $p 
ightarrow (p \wedge q)$ 

#### Answer: D



9. If 
$$y = \tan^{-1} \cdot \frac{1}{1+x+x^2} + \tan^{-1} \cdot \frac{1}{x^2+3x+3}$$
  
upto  $+\tan^{-1} \cdot \frac{1}{x^2+5x+7} + \ldots + 2n$   
terms ( $\forall x \ge 0$ ), then y(0) is

A. 
$$an^{-1}(n)$$
  
B.  $an^{-1}(2n)$ 

$$\mathsf{C.}\,2\tan^{-1}(n)$$

D. 0

#### **Answer: B**

### Watch Video Solution

10. If the mean of a set of observations  $x_1, x_2, \ldots, x_{10}$  is 40, then the mean of  $x_1 + 4, x_2 + 8, x_3 + 12, \ldots, x_{10} + 40$  is

A. 54

B. 62

C. 38

D. 50

Answer: B



**11.** The differential equation of the curve for which the point of tangency (closer to the x - axis) divides the segment of the tangent

between the coordinate axes in the ratio 1:2,

#### is

A. 
$$xdy = 2ydx$$

$$\mathsf{B.} x dy = y dx$$

$$\mathsf{C.}\, xdy+2ydx=0$$

D. 
$$xdy + ydx = 0$$

#### Answer: C

12. The locus of the centre of the circle described on any focal chord of the parabola  $y^2 = 4ax$  as the diameter is

A. 
$$y^2=2a(x+a)$$
  
B.  $y^2=a(x+a)$ 

C. 
$$y^2=2a(x-a)$$

D. 
$$y^2=4a(x-a)$$

#### Answer: C

13. 
$$\int rac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx =$$

A. 
$$rac{\sin 2x}{2}+C$$

$$\mathsf{B.} - \frac{\sin 2x}{2} + C$$

$$\mathsf{C.}\cos 2x+C$$

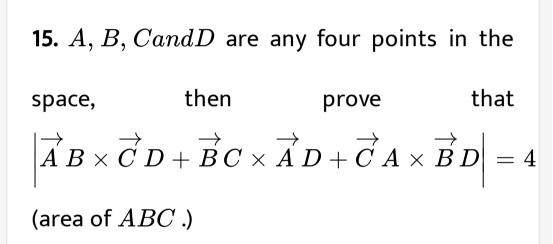
D. 
$$rac{\cos x}{2}+C$$

#### Answer: B

14.

 $f(x) = egin{bmatrix} 4x+1 & -\cos x & -\sin x \ 6 & 8\sin lpha & 0 \ 12\sin lpha & 16\sin^2 lpha & 1+4\sin lpha \end{bmatrix}$  and f(0) = 0. If the sum of all possible values of lpha is  $k\pi$  for  $lpha \in [0, 2\pi]$ , then the value of k is equal to

A. 2


B. 4

C. 6

D. 8

#### Answer: C





A. 2

# $\mathsf{B.}\,\frac{1}{2}$

D.  $\frac{1}{4}$ 

#### Answer: C

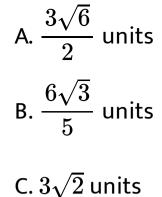
#### Watch Video Solution

**16.** 2 dice are thrown. Suppose a random variable X is assigned a value 2k, if the sum on the dice is equal to k, then the expected value of X is

#### A. 10

B. 12

C. 14


D. 
$$\frac{50}{9}$$

#### Answer: C

Watch Video Solution

17. The length of the perpendicular from P(1,0,2) on the line  $rac{x+1}{3} = rac{y-2}{-2} = rac{z+1}{-1}$ 

is



D. 
$$2\sqrt{3}$$
 units

#### Answer: A

# Watch Video Solution

**18.** Let there are exactly two points on the ellipse 
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 whose distance from (0,

. 1

0) are equal to

$$\sqrt{rac{a^2}{2}+b^2}.$$
 Then, the

eccentricity of the ellipse is equal to

A. 
$$\frac{1}{2}$$
  
B.  $\frac{1}{2\sqrt{2}}$   
C.  $\frac{1}{\sqrt{2}}$ 

D. None of these

#### Answer: C



19. The area (in sq. units) bounded by the curve  $|y| = |\ln|x||$  and the coordinate axes is

- A. 2
- B.4
- C. 6
- D. 8

#### Answer: B



**20.** The volume of a cube is increasing at the rate of  $9cm^3/\sec$ . The rate (in  $cm^2/\sec$ ) at which the surface area is increasing when the edge of the cube is 9 cm, is

A. 1

- B. 2
- C. 3
- D. 4

#### Answer: D

**21.** Let M and N are two non singular matrices of order 3 with real entries such that (adjM) = 2N and (adjN) = M. If  $MN = \lambda I$ , then the value the values of  $\lambda$  is equal to (where, (adj X) represents the adjoint matrix of matrix X and I represents an identity matrix)

22. The value of  $\lim_{x
ightarrow 0} rac{\ln(2-\cos 15x)}{\ln^2(\sin 3x+1)}$  is

equal to

Watch Video Solution

23. If the number of terms in the expansion of  $(1+x)^{101}ig(1+x^2-xig)^{100}$  is n, then the value of  $rac{n}{25}$  is eugal to

24. If the function 
$$f(x)$$
, defined as  

$$f(x) = \begin{cases} \frac{a(1-x\sin x) + b\cos x + 5}{x^2} & : x \neq 0 \\ 3 & : x = 0 \end{cases}$$
is  
continuous at  $x = 0$ , then the value of  
 $\frac{b^4 + a}{5 + a}$  is equal to  
Watch Video Solution

**25.** Let the points A, B, C and D are represented by complex numbers  $Z_1, Z_2, Z_3$  and  $Z_4$ respectively, If A, B and C are not collinear and  $2Z_1+Z_2+Z_3-4Z_4=0$ , then the value of  ${A {
m rea of} \ \Delta DBC \over {
m A {
m rea of} \ \Delta ABC}}$  is equal to