© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 61

Mathematics

1. The coefficients of x^{13} in the expansion of $(1-x)^{5}\left(1+x+x^{2}+x^{3}\right)^{4}$, is
A. 24
B. 12
C. 6
D. 4
2. A bag contains 30 tokens numbered serially from 0 to 29 . The number of ways of choosing 3 tokens from the bag, such that the sum on them is 30 , is
A. 56
B. 44
C. 75
D. 81

Answer: C

- Watch Video Solution

3. Number of roots of the equation $2 \sqrt{2 x+1}=2 x-1$ is 0 (b) 1 (c) 2 (d)
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

4. Let the $n^{\text {th }}$ term of a series be given by $t_{n}=\frac{n^{2}-n-2}{n^{2}+3 n}, n \leq 3$. Then product $t_{3} t_{4} \ldots . t_{50}$ is equal to
A. $\frac{1}{5^{2} \cdot 7 \cdot 13.53}$
B. $\frac{1}{5.7^{2} .12 .53}$
C. $\frac{1}{5^{2} \cdot 7.12 .51}$
D. $\frac{1}{5.7^{2} .13 .53}$

Answer: D

5. The value of $\lim _{n \rightarrow \infty} \frac{1^{2}-2^{2}+3^{2}-4^{2}+5^{2} \ldots .+(2 n+1)^{2}}{n^{2}}$ is equal to
A. 2
B. 4
C. 6
D. 8

Answer: A

Watch Video Solution

6. Two ships are sailling in the sea on the two sides of a lighthouse. If the distance between the ships is $10(\sqrt{3}+1)$ meters and their angle of elevations of the top of the lighthouse are 60° and 45°, then the height
of the lighthouse is (The two ships and the foot of lighthouse are in a straight line)
A. 20 meters
B. $20 \sqrt{3}$ meters
C. $10 \sqrt{3}$ meters
D. $5 \sqrt{3}$ meters

Answer: C

- Watch Video Solution

7. If $\left[\sin ^{-1} x\right]^{2}-2\left[\sin ^{-1} x\right]+1 \leq 0$ (where, [.] represents the greatest integral part of x), then
A. $x \in[\sin 1, \sin 2]$
B. $x \in[-\sin 1, \sin 1]$
C. $x \in[\sin 1,1]$
D. $x \in[-\sin 1, \sin 2]$

Answer: C

- Watch Video Solution

8. Let $f: R \rightarrow R$ be a function defined as $f(x)=\frac{x^{2}-6}{x^{2}+2}$, then f is
A. one - one but not onto
B. one - one and onto
C. onto but not one - one
D. neither one - one nor onto

Answer: D

- Watch Video Solution

9. If the variate of a distribution takes the values $1^{2}, 2^{2}, 3^{2}, \ldots . n^{2}$ with frequencies $n, n-1, n-2, \ldots .3,2,1$ respectively, then the mean value of the distribution is
A. $\frac{n(n+2)}{3}$
B. $\frac{n(n+1)(n+2)}{6}$
C. $\frac{n+2}{3}$
D. $\frac{(n+1)(n+2)}{6}$

Answer: D

- Watch Video Solution

10. The point of intersection of tangents drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the points where it is intersected by the line $l x+m y+n=0$, is $\left(\frac{-a^{2} l}{n}, \frac{b^{2} m}{n}\right)$ (b) $\left(\frac{-a^{2} l}{m}, \frac{b^{2} n}{m}\right)\left(\frac{a^{2} l}{m}, \frac{-b^{2} n}{m}\right)$
(d) $\left(\frac{a^{2} l}{m}, \frac{b^{2} n}{m}\right)$
A. $\left(\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)$
B. $\left(\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)$
C. $\left(-\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)$
D. $\left(-\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)$

Answer: C

- Watch Video Solution

11. The value of the integral $\int_{0}^{\pi} \frac{e^{|\cos x|} \sin x}{1+e^{\cot x}} d x$ is equal to
A. $e+1$
B. $1-e$
C. $e-1$
D. $\frac{-1+e}{2}$

Answer: C

12. The curve $y=f(x)$ in the first quadrant is such that the y -intercept of the tangent drawn at any point P is equal to twice the ordinate of P If $y=f(x)$ passes through $Q(2,3)$, then the equation of the curve is
A. $x^{2} y=12$
B. $x y=6$
C. $x y^{2}=18$
D. $x+y^{2}=11$

Answer: B

- Watch Video Solution

13. The value of the integral $I=\int \frac{2 x^{9}+x^{10}}{\left(x^{2}+x^{3}\right)^{3}} d x$ is equal to (where, C is the constant of integration)
A. $\frac{x^{4}}{2(1+x)^{2}}+C$
B. $\frac{x^{6}}{2(x+1)^{2}}+C$
C. $\frac{x^{4}}{(x+1)^{2}}+C$
D. $\frac{x^{6}}{2(x+1)^{3}}+C$

Answer: A

- Watch Video Solution

14. If A, B and C are square matrices of same order and I is an identity matrix of the same order, such that $C^{2}=C B+A C$ and $A B=I$, then $(C-A)^{-1}$ is equal to
A. $C-A$
B. $C-B$
C. $B-C$
D. $B+I$

Answer: B

15.

The
system
of
equations
$\alpha(x-1)+y+z=-1, x+\alpha(y-1)+z=-1$ and $x+y+\alpha(z-1)$
has no solution, if α is equal to
A. -2 or 1
B. -2
C. 1
D. -1

Answer: B

Watch Video Solution

16. If vectors $4 \vec{p}+\vec{q}, 2 \vec{p}-3 \vec{q}$ and $5 \vec{p}-3 \vec{q}, 5 \vec{p}+3 \vec{q}$ are a pair of mutually perpendicular vectors and if the angle between \vec{p} and \vec{q} is θ, then the value of $\sin ^{2} \theta$ is equal to
A. $\frac{3}{5}$
B. $\frac{9}{25}$
C. $\frac{1}{2500}$
D. $\frac{2499}{2500}$

Answer: D

- Watch Video Solution

17. The equation of the plane through the points $(2,-1,0),(3,-4,5)$ parallel to a line with direction cosines proportional to $2,3,4$ is $9 x-2 y-3 z=k$, where k is
A. 20
B. -20
C. 10
D. -10
18. The line $2 x+3 y=12$ meets the coordinates axes at A and B respectively. The line through $(5,5)$ perpendicular to $A B$ meets the coordinate axes and the line $A B$ at C, D and E respectively. If O is the origin, then the area (in sq. units) of the figure OCEB is equal to

A. $\frac{13}{3}$
B. $\frac{23}{3}$
C. 11
D. 7

Answer: B

- Watch Video Solution

19. The extremities of a diagonal of a rectangle which are parallel to the diagonal are
A. $3 x-4 y= \pm 5$
B. $3 x+4 y= \pm 10$
C. $3 x+4 y= \pm 25$
D. $6 x-8 y= \pm 25$

Answer: D

- Watch Video Solution

20. The ordinates of points P and Q on the parabola $y^{2}=12 x$ are in the ration 1:2. Find the locus of the point of intersection of the normals to
the parabola at P and Q .
A. $y^{2}=\frac{12}{343}(x+6)^{3}$
B. $y^{2}=\frac{12}{343}(x+6)^{3}$
C. $(y-6)^{2}=\frac{12 x}{343}$
D. $(y+6)^{2}=\frac{12 x}{343}$

Answer: A

- Watch Video Solution

21. The area (in sq. untis) bounded by $[x+y]=2$ with the co- ordinate axes is equal to (where [.] denotes the greatest integer function)

- Watch Video Solution

22. Out of 1000 boys in a school, 300 played cricket, 380 played hockey and 420 played basketball. Of the total, 120 played both basketball and
hockey,100 played cricket and basketball, 70 played cricket and hockey and 56 played all the three games. If the probability of the number of boys who did not play any game is k, then $200 k$ is equal to

- Watch Video Solution

23.

$4 \cos 36^{\circ}+\cot \left(7 \frac{1^{\circ}}{2}\right)=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}+\sqrt{n_{4}}+\sqrt{n_{5}}+\sqrt{n_{6}}$,
then the value of $\left(\frac{\Sigma_{i=1}^{6} n_{i}^{2}}{10}\right)$ is equal to

- Watch Video Solution

24. The number of solution of $x^{3}+4 x-1=0$ in the interval $x \in(-2,1)$ is

- Watch Video Solution

25. For the complex number Z, the sum of all the solutions of $Z^{2}+|Z|=(\bar{Z})^{2}$ is equal to
