

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 62

Mathematics

1. The greatest term in the expansion of $\left(3+2x
ight)^{51}$, where

$$x=rac{1}{5}$$
, is

A. 5^{th} term

B. 6^{th} term

C. 7^{th} term

D. 9^{th} term

Answer: C

2. If
$$\Sigma_{r=1}^n t_r = rac{1}{6}n(n+1)(n+2), \ \forall n \geq 1$$
, then the value of $\lim_{n \to \infty} \Sigma_{r=1}^n rac{1}{t_r}$ is equal to

A. 2

B. 3

C.
$$\frac{3}{2}$$

D. 6

Answer: A

3. If
$$rac{\pi}{2} < lpha < rac{3\pi}{4}$$
 , then $\sqrt{2 an lpha + rac{1}{\cos^2 lpha}}$ is equal to

- A. -1 + an lpha
- $B. -1 \tan lpha$
- $\mathsf{C.1} + \tan\alpha$
- D. $1 \tan lpha$

Answer: C

Watch Video Solution

4. The sum of all the solutions in [0, 100] for the equation

 $\sin \pi x + \cos \pi x = 0$ is

A. 2550

B. 5025

C. 2525

D. 5050

Answer: B

Watch Video Solution

5. If
$$f(x) = an^{-1} igg(rac{\ln(e \, / \, x^3)}{\ln(e x^3)} igg) + an^{-1} igg(rac{\ln(e^4 x^3)}{\ln(e \, / \, x^{12})} igg) (\, orall \, x \geq e$$

incorrect statement is

A. f(x) is a constant function

 $\mathsf{B.}\,f(x)\geq 0$

C. f(x) is an even function

D. $f(x) \geq \pi$

Answer: D

6. The function $f(x)=(\sin x)^{\tan^2 x}$ is not defined at $x=rac{\pi}{2}.$ The value of $f\Big(rac{\pi}{2}\Big)$ such that f is continuous at $x=rac{\pi}{2}$ is

A. \sqrt{e}

B.
$$\frac{1}{\sqrt{e}}$$

C. 2

D. None of these

Answer: B

Watch Video Solution

7. Which of the following statements is not a tautology?

A.
$$(p \wedge q \wedge r) \Rightarrow (\ensuremath{\,{}^{\scriptstyle\frown}} p \lor \ensuremath{\,{}^{\scriptstyle\frown}} q \lor r)$$

$$\mathsf{B.} \left(p \wedge q \wedge r \right) \Rightarrow \left(\left(\texttt{-}p \wedge \texttt{-}q \right) \lor r \right)$$

$$\mathsf{C}. \left(p \wedge extsf{-}q \wedge r
ight) \Rightarrow \left(extsf{-}p \lor q \lor r
ight)$$

D.
$$(p \wedge q \wedge {\,{\scriptstyle{\sim}}} r) \Rightarrow r$$

Answer: D

8. The area between the curves $x=4y-y^2$ and 0 is λ

square units, then the value of 3λ is equal to

A. 28

B. 30

C. 32

D. 36

Answer: C

9. If $I_n=\int_0^2 rac{2dx}{(1-x^n)}$, then the value of $\lim_{n o\infty}\ I_n$ is

equal to

A. 1

B. 2

C.
$$\frac{1}{2}$$

D. $\frac{1}{3}$

Answer: B

10. The solution of the differential equation $ig(1-x^2ig)rac{dy}{dx}-xy=1$ is (where, $|x|<1,x\in R$ and C is

an arbitrary constant)

A.
$$y(1-x^2) = an^{-1}x + C$$

B. $y\sqrt{1-x^2} = an^{-1}x + C$
C. $y\sqrt{1-x^2} = \sin^{-1}(x) + C$

D. y.
$$\left(1-x^2
ight)=\sin^{-1}x+C$$

Answer: C

Watch Video Solution

11. The maximum value of $f(x)=rac{\sin 2x}{\sin x+\cos x}$ in the interval $\left(0,rac{\pi}{2}
ight)$ is

B.
$$\frac{1}{\sqrt{2}}$$

C. 1

D.
$$\frac{1}{2}$$

Answer: B

Watch Video Solution

12. The integral
$$\int rac{1}{(1+\sqrt{x})\sqrt{x-x^2}} dx$$
 is equal to (where

C is the constant of integration)

$$\begin{aligned} &\mathsf{A}.\,\frac{\sqrt{x}+1}{\sqrt{1-x}}+C\\ &\mathsf{B}.\,2\!\left(\frac{\sqrt{x}-1}{\sqrt{1+x}}\right)+C\\ &\mathsf{C}.\,2\!\left(\frac{\sqrt{x}-1}{\sqrt{1-x}}\right)+C \end{aligned}$$

D.
$$rac{\sqrt{x}+1}{\sqrt{1+x}}+C$$

Answer: C

Watch Video Solution

13. Let $L_1: x = y = z$ and $L_2 = x - 1 = y - 2 = z - 3$ be two lines. The foot of perpendicular drawn from the origin O(0, 0, 0) on L_1 to L_2 is A. If the equation of a plane containing the line L_1 and perpendicular to OA is 10x + by + cz = d, then the value of b + c + d is equal to

A. 10

B. - 10

C. 12

Answer: B

Watch Video Solution

14. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are three vectors, such that $\left|\overrightarrow{a}\right| = 2, \left|\overrightarrow{b}\right| = 3, \left|\overrightarrow{c}\right| = 4, \overrightarrow{a}, \overrightarrow{c} = 0, \overrightarrow{a}, \overrightarrow{b} = 0$ and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$, then the value of $\left|\overrightarrow{a} \times \left(2\overrightarrow{b} - 3\overrightarrow{c}\right)\right|$ is equal to

A. $12\sqrt{3}$

B. $6\sqrt{3}$

C. $3\sqrt{3}$

D. 5

Answer: A

15. If A is a skew symmetric matrix of order 3, B is a 3×1 column matrix and $C = B^T A B$, then which of the following is false?

A. C is singular

B. C is non singular

C. C is a symmetric matrix

D. C is a skew symmetric matrix

Answer: B

Watch Video Solution

16. Let P_1 , P_2 and P_3 are the probabilities of a student passing three independent exams A, B and C respectively. If P_1 , P_2 and P_3 are the roots of equation $20x^3 - 27x^2 + 14x - 2 = 0$, then the probability that the student passes in exactly one of A, B and C is

A.
$$\frac{3}{20}$$

B. $\frac{7}{20}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: C

17. Let $A \equiv (6, 7), B \equiv (2, 3) and C \equiv (-2, 1)$ be the vertices of a triangle. Find the point P in the interior of the triangle such that PBC is an equilateral triangle.

A.
$$\left(-\sqrt{3}, 2+2\sqrt{3}
ight)$$

B. $\left(\sqrt{3}, 2+2\sqrt{3}
ight)$
C. $\left(\sqrt{3}, 2-2\sqrt{3}
ight)$
D. $\left(-\sqrt{3}, 2-2\sqrt{3}
ight)$

Answer: A

18. If the chord of contact of the tangents from the point

(lpha,eta) to the circle $x^2+y^2=r_1^2$ is a tangent to the circle

$$(x-a)^2 + (y-b)^2 = r_2^2$$
, then

$$\begin{array}{l} \mathsf{A}.\,r_2^2 \big(\alpha^2 + \beta^2 \big) = \big(r_1^2 - a\alpha - b\beta \big)^2 \\\\ \mathsf{B}.\,r_2^2 \big(\alpha^2 + \beta^2 \big) = \big(r_1^2 + a\alpha = b\beta \big)^2 \\\\ \mathsf{C}.\,r_2^2 \big(\alpha^2 + \beta^2 \big) = \big(r_1^2 - a\alpha + b\beta \big)^2 \\\\ \mathsf{D}.\,r_2^2 \big(\alpha^2 + \beta^2 \big) = \big(r_1^2 + a\alpha + b\beta \big)^2 \end{array}$$

Answer: A

19. Tangents are drawn at the end points of a normal chord of the parabola $y^2 = 4ax$. The locus of their point of intersection is

A.
$$(x-2a)y^2+4a^3=0$$

B.
$$(x-2a)y^2-4a^3=0$$

C. $(x+2a)y^2-4a^3=0$

D.
$$(x+2a)y^2 + 4a^3 = 0$$

Answer: D

20. Find the value of k for which the point P(2, k) on the ellipse $x^2 + 2y^2 = 6$, which is nearest to the line x + y = 7

A.
$$\left(\sqrt{2}, \sqrt{2}\right)$$

B. $\left(-2, -1\right)$
C. $\left(\sqrt{5}, \frac{1}{\sqrt{2}}\right)$

D.(2,1)

Answer: D

22. Let matrix
$$A = egin{bmatrix} x & y & -z \ 1 & 2 & 3 \ 1 & 1 & 2 \end{bmatrix}$$
, where $x,y,z\in N.$ If

 $ert adj(adj(adj(adjA))) ert = 4^8.5^{16}$, then the number of such

matrices A is equal to (where, |M| represents determinant

of a matrix M)

23. If m numer of integers greater than 7000 can be formed with the digits 3, 5, 7, 8 and 9, such that no digit is being repeated, then the value of $\frac{m}{100}$ is

24. Let z=x+iy and w=u+iv be two complex numbers, such that |z|=|w|=1 and $z^2+w^2=1$. Then, the number of ordered pairs (z, w) is equal to (where, $x,y,u,v\in R$ and $i^2=-1$)

Watch Video Solution

25. A survey shows that 69% students like mathematics, whereas 75% like chemistry. If x% students like both the subjects, then the maximum value of x is

