© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 62

Mathematics

1. The greatest term in the expansion of $(3+2 x)^{51}$, where
$x=\frac{1}{5}$, is
A. $5^{\text {th }}$ term
B. $6^{\text {th }}$ term
C. $7^{\text {th }}$ term
D. $9^{\text {th }}$ term

Answer: C

- Watch Video Solution

2. If $\Sigma_{r=1}^{n} t_{r}=\frac{1}{6} n(n+1)(n+2), \forall n \geq 1$, then the value of $\lim _{n \rightarrow \infty} \Sigma_{r=1}^{n} \frac{1}{t_{r}}$ is equal to
A. 2
B. 3
C. $\frac{3}{2}$
D. 6

Answer: A

(Watch Video Solution

3. If $\frac{\pi}{2}<\alpha<\frac{3 \pi}{4}$, then $\sqrt{2 \tan \alpha+\frac{1}{\cos ^{2} \alpha}}$ is equal to
A. $-1+\tan \alpha$
B. $-1-\tan \alpha$
C. $1+\tan \alpha$
D. $1-\tan \alpha$

Answer: C

(D) Watch Video Solution
4. The sum of all the solutions in $[0,100]$ for the equation $\sin \pi x+\cos \pi x=0$ is
A. 2550
B. 5025
C. 2525
D. 5050

Answer: B

- Watch Video Solution

5.

$f(x)=\tan ^{-1}\left(\frac{\ln \left(e / x^{3}\right)}{\ln \left(e x^{3}\right)}\right)+\tan ^{-1}\left(\frac{\ln \left(e^{4} x^{3}\right)}{\ln \left(e / x^{12}\right)}\right)(\forall x \geq e)$
incorrect statement is
A. $f(x)$ is a constant function
B. $f(x) \geq 0$
C. $f(x)$ is an even function
D. $f(x) \geq \pi$

Answer: D

- Watch Video Solution

6. The function $f(x)=(\sin x)^{\tan ^{2} x}$ is not defined at $x=\frac{\pi}{2}$. The value of $f\left(\frac{\pi}{2}\right)$ such that f is continuous at $x=\frac{\pi}{2}$ is
A. \sqrt{e}
B. $\frac{1}{\sqrt{e}}$
C. 2
D. None of these

Answer: B

(D) Watch Video Solution

7. Which of the following statements is not a tautology?
A. $(p \wedge q \wedge r) \Rightarrow(\sim p \vee \sim q \vee r)$
B. $(p \wedge q \wedge r) \Rightarrow((\sim p \wedge \sim q) \vee r)$
C. $(p \wedge \sim q \wedge r) \Rightarrow(\sim p \vee q \vee r)$
D. $(p \wedge q \wedge \sim r) \Rightarrow r$
8. The area between the curves $x=4 y-y^{2}$ and 0 is λ square units, then the value of 3λ is equal to
A. 28
B. 30
C. 32
D. 36

Answer: C

(D) Watch Video Solution
9. If $I_{n}=\int_{0}^{2} \frac{2 d x}{\left(1-x^{n}\right)}$, then the value of $\lim _{n \rightarrow \infty} I_{n}$ is equal to
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

10. The solution of the differential equation $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$ is (where, $|x|<1, x \in R$ and C is
an arbitrary constant)
A. $y\left(1-x^{2}\right)=\tan ^{-1} x+C$
B. $y \sqrt{1-x^{2}}=\tan ^{-1} x+C$
C. $y \sqrt{1-x^{2}}=\sin ^{-1}(x)+C$
D. $y \cdot\left(1-x^{2}\right)=\sin ^{-1} x+C$

Answer: C

- Watch Video Solution

11. The maximum value of $f(x)=\frac{\sin 2 x}{\sin x+\cos x}$ in the interval $\left(0, \frac{\pi}{2}\right)$ is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 1
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

12. The integral $\int \frac{1}{(1+\sqrt{x}) \sqrt{x-x^{2}}} d x$ is equal to (where

C is the constant of integration)
A. $\frac{\sqrt{x}+1}{\sqrt{1-x}}+C$
B. $2\left(\frac{\sqrt{x}-1}{\sqrt{1+x}}\right)+C$
C. $2\left(\frac{\sqrt{x}-1}{\sqrt{1-x}}\right)+C$
D. $\frac{\sqrt{x}+1}{\sqrt{1+x}}+C$

Answer: C

- Watch Video Solution

13. Let $L_{1}: x=y=z$ and $L_{2}=x-1=y-2=z-3$ be two lines. The foot of perpendicular drawn from the origin $O(0,0,0)$ on L_{1} to L_{2} is A . If the equation of a plane containing the line L_{1} and perpendicular to OA is $10 x+b y+c z=d$, then the value of $b+c+d$ is equal to
A. 10
B. -10
C. 12

D. -7

Answer: B

(Watch Video Solution

14. If \vec{a}, \vec{b} and \vec{c} are three vectors, such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4, \vec{a} \cdot \vec{c}=0, \vec{a} \cdot \vec{b}=0 \quad$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then the value of $|\vec{a} \times(2 \vec{b}-3 \vec{c})|$ is equal to
A. $12 \sqrt{3}$
B. $6 \sqrt{3}$
C. $3 \sqrt{3}$
D. 5

(D) Watch Video Solution

15. If A is a skew symmetric matrix of order $3, B$ is a 3×1 column matrix and $C=B^{T} A B$, then which of the following is false?
A. C is singular
B. C is non singular
C. C is a symmetric matrix
D. C is a skew symmetric matrix

Answer: B
16. Let P_{1}, P_{2} and P_{3} are the probabilities of a student passing three independent exams A, B and C respectively. If P_{1}, P_{2} and P_{3} are the roots of equation $20 x^{3}-27 x^{2}+14 x-2=0$, then the probability that the student passes in exactly one of A, B and C is
A. $\frac{3}{20}$
B. $\frac{7}{20}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: C
17. Let $A \equiv(6,7), B \equiv(2,3)$ and $C \equiv(-2,1)$ be the vertices of a triangle. Find the point P in the interior of the triangle such that $P B C$ is an equilateral triangle.
A. $(-\sqrt{3}, 2+2 \sqrt{3})$
B. $(\sqrt{3}, 2+2 \sqrt{3})$
C. $(\sqrt{3}, 2-2 \sqrt{3})$
D. $(-\sqrt{3}, 2-2 \sqrt{3})$

Answer: A

Watch Video Solution

18. If the chord of contact of the tangents from the point (α, β) to the circle $x^{2}+y^{2}=r_{1}^{2}$ is a tangent to the circle
$(x-a)^{2}+(y-b)^{2}=r_{2}^{2}$, then

$$
\begin{aligned}
& \text { A. } r_{2}^{2}\left(\alpha^{2}+\beta^{2}\right)=\left(r_{1}^{2}-a \alpha-b \beta\right)^{2} \\
& \text { B. } r_{2}^{2}\left(\alpha^{2}+\beta^{2}\right)=\left(r_{1}^{2}+a \alpha=b \beta\right)^{2} \\
& \text { C. } r_{2}^{2}\left(\alpha^{2}+\beta^{2}\right)=\left(r_{1}^{2}-a \alpha+b \beta\right)^{2} \\
& \text { D. } r_{2}^{2}\left(\alpha^{2}+\beta^{2}\right)=\left(r_{1}^{2}+a \alpha+b \beta\right)^{2}
\end{aligned}
$$

Answer: A

Watch Video Solution

19. Tangents are drawn at the end points of a normal chord of the parabola $y^{2}=4 a x$. The locus of their point of intersection is
A. $(x-2 a) y^{2}+4 a^{3}=0$
B. $(x-2 a) y^{2}-4 a^{3}=0$
C. $(x+2 a) y^{2}-4 a^{3}=0$
D. $(x+2 a) y^{2}+4 a^{3}=0$

Answer: D

(Watch Video Solution

20. Find the value of k for which the point $P(2, k)$ on the ellipse $x^{2}+2 y^{2}=6$, which is nearest to the line $x+y=7$
A. $(\sqrt{2}, \sqrt{2})$
B. $(-2,-1)$
C. $\left(\sqrt{5}, \frac{1}{\sqrt{2}}\right)$
D. $(2,1)$

Answer: D

- Watch Video Solution

21. The value of $\lim _{x \rightarrow 1} \frac{\sqrt[5]{x^{2}}-2 \sqrt[5]{x}+1}{(x-1)^{2}}$ is equal to

- Watch Video Solution

22. Let matrix $A=\left[\begin{array}{ccc}x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$, where $x, y, z \in N$. If
$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))|=4^{8} .5^{16}$, then the number of such matrices A is equal to (where, $|M|$ represents determinant of a matrix M)

- Watch Video Solution

23. If m numer of integers greater than 7000 can be formed with the digits $3,5,7,8$ and 9 , such that no digit is being repeated, then the value of $\frac{m}{100}$ is

- Watch Video Solution

24. Let $z=x+i y$ and $w=u+i v$ be two complex numbers, such that $|z|=|w|=1$ and $z^{2}+w^{2}=1$. Then, the number of ordered pairs (z, w) is equal to (where, $x, y, u, v \in R$ and $\left.i^{2}=-1\right)$
25. A survey shows that 69% students like mathematics, whereas 75% like chemistry. If $x \%$ students like both the subjects, then the maximum value of x is
(D) Watch Video Solution
