©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 64

Mathematics

1.

$\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$

The value of $a_{0}+a_{2}+a_{4}+\ldots+a_{38}$ is
A. $2^{20}\left(2^{20}+1\right)$
B. $2^{20}\left(2^{20}+1\right)$
C. $2^{39}-2^{19}$
D. $2^{39}+2^{19}$

Answer: C

- Watch Video Solution

2. The number of natural numbers n for which
the equation $(x-8) x=(n-10)$ has no real solutions equal to
A. 2
B. 3
C. 4
D. 5

Answer: D
(D) Watch Video Solution
3. Sum of n terms of the series $\frac{1^{4}}{1.3}+\frac{2^{4}}{3.5}+\frac{3^{4}}{5.7}+\ldots$. is equal to

$$
\begin{aligned}
& \text { A. } \frac{n(n+1)\left(2 n^{2}+n+1\right)}{6(2 n+1)} \\
& \text { B. } \frac{(n+1)\left(n^{2}+1\right)}{6(2 n+1)} \\
& \text { C. } \frac{(n+1)\left((2 n+1)^{2}+1\right)}{8(2 n+1)} \\
& \text { D. } \frac{n(n+1)\left((2 n+1)^{2}+1\right)}{16(2 n+1)}
\end{aligned}
$$

Answer: B
4. If A and B are matrices with 24 and 40
elements respectively, then the number of possible orders of A and B such that $A B$ is defined is
A. 2
B. 3
C. 4
D. 8
5. Let $A B C D$ be a quadrilateral in which $A B$ is parallel to $C D$ and perpendicular to $A D, A B=$ 3CDand the area of the quadrilateral is 4 square units. If a circle can be drawn touching all the sides of the quadrilateral, then its radius is:
A. 1
B. $\sqrt{5}$
C. $\sqrt{2}$
D. $\sqrt{3}$

- Watch Video Solution

6. If the mean of a set of observations $x_{1}, x_{2}, \ldots, x_{n}$ is \bar{X}, then the mean of the observations $x_{i}+2 i, i=1,2, \ldots, n$ is
A. $b r x+2(n+1)$
B. $\bar{x}+(n+1)$
C. $\bar{x}+\frac{n+1}{2 n}$
D. None of these
7.

If the range
$f(x)=\tan ^{1} x+2 \sin ^{-1} x+\cos ^{-1} x$ is $[a, b]$,
then
A. $a=\frac{\pi}{4}$
B. $a=-\frac{\pi}{2}$
C. $b=\frac{5 \pi}{4}$
D. $b=\frac{3 \pi}{2}$

Answer: C
8. The tops of two poles of height 40 m and 25 m are connected by a wire. If the wire makes an angle 30° with the horizontal, then the length of the wire is
A. 30 m
B. 20 m
C. 15 m
D. 25 m
9. The equation of the image of line $y=x$ wire respect to the line mirror $2 x-y=1$ is
A. $y=7 x-5$
B. $y=7 x-6$
C. $y=3 x-7$
D. $y=6 x-5$

Answer: B
10.

The
value
$\lim _{x \rightarrow \infty}\left[\frac{1^{\frac{1}{x}}+2^{\frac{1}{x}}+3^{\frac{1}{x}}+\ldots+10^{\frac{1}{x}}}{10}\right]^{10 x}$ is
A. 10 !
B. 10
C. 9 !
D. 0

Answer: A

- Watch Video Solution

11. Two mutually perpendicular tangents of the parabola $y^{2}=4 a x$ at the points Q_{1} and Q_{2} on it meet its axis in P_{1} and P_{2}. If S is the focus of
the parabola, then the value of $\left(\frac{1}{S P_{1}}+\frac{1}{S P_{2}}\right)^{-1}$ is equal
A. $\frac{a}{4}$
B. $\frac{a}{2}$
C. a
D. 2 a

Answer: C

12.
 $$
\int_{0}^{1} x^{11} e^{-x^{24}} d x=A
$$ and
 $\int_{0}^{1} x^{3} e^{-x^{8}} d x=B$, then the relation between A and B is

A. $A=3 B$
B. $B=3 A$
C. $A+3 B=0$
D. $B+3 A=0$

Answer: B
13. Consider a square matrix A or order 2 which has its elements as $0,1,2,4$. If the absolute value of $|A|$ is least then, then absolute value of $|\operatorname{adj}(\operatorname{adj}(A))|$ is equal to
A. 0
B. 2
C. 1
D. 4

- Watch Video Solution

14. If $f(x)=\left\{\begin{array}{ll}\frac{e^{[2 x]+2 x+1}-1}{[2 x]+2 x+1} & : \\ 1 \neq 0 \\ 1 & : \quad x=0\end{array}\right.$, then
(where [.] represents the greatest integer function)

(Watch Video Solution

15.

Consider
the
line
$L \equiv \frac{x-1}{2}=\frac{y+2}{3}=\frac{z-7}{6}$.
Point
$P(2,-5,0)$ and Q are such that $P Q$ is
perpendicular to the line L and the midpoint of $P Q$ lies on line L, then coordinates of Q are
A. $(-4,-5,2)$
B. $(-3,0,1)$
C. $(1,6,2)$
D. $(1,5,7)$

Answer: A
(D) Watch Video Solution
16. If three fair dice are thrown and the sum is an odd number, then the probability that all the three dice show an odd number is
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{5}{6}$
D. $\frac{1}{4}$

Answer: D
(D) Watch Video Solution
$I=\int \frac{d x}{x^{10}+x}=\lambda \ln \left(\frac{x^{9}}{1+x^{\mu}}\right)+C$, (where, C
is the constant of integration) then the value of
$\frac{1}{\lambda}+\mu$ is equal to
A. 81
B. $\frac{82}{9}$
C. 18
D. 8

Answer: C

18. The locus of the mid - points of the parallel chords with slope m of the rectangular hyperbola

$$
x y=c^{2} \text { is }
$$

A. $y+m x=0$
B. $y-m x=0$
C. $m y-x=0$
D. $m y+x=0$

Answer: A

- Watch Video Solution

19. If $y=m x+5$ is a tangent to $x^{3} y^{3}=a x^{3}+b y^{3}$ at point $(1,2)$, then the value of a is equal to

$$
\begin{aligned}
& \text { A. } \frac{9}{5} \\
& \text { B. } \frac{16}{5} \\
& \text { C. } \frac{9}{4} \\
& \text { D. } \frac{18}{7}
\end{aligned}
$$

Answer: B

- Watch Video Solution

20. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ represents the arc of a circle in the second and the third quadrant and passing through
$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Then, the radius (in units) of the circle is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. 2
D. 1
21. If $\frac{3+\cot 80^{\circ} \cot 20^{\circ}}{\cot 80^{\circ}+\cot 20^{\circ}}=\tan . \frac{\pi}{k}$, then the
value of k is (where, $\frac{\pi}{k}$ is an acute angle)

D Watch Video Solution

22. If z is a complex number, then the area of the triangle (in sq. units) whose vertices are the roots of the equation $z^{3}+i z^{2}+2 i=0$ is equal to (where, $i^{2}=-1$)
23. A point (α, β, γ) satisfies the equation of the
plane $3 x+4 y+7 z=3$. The value of β, such
that $\vec{p}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ satisfies the relation $\hat{j} \times(\hat{j} \times \vec{p})=\overrightarrow{0}$, is equal to

(D) Watch Video Solution

24. The value fo the integral
$I=\int_{0}^{\infty} \frac{d x}{\left(1+x^{2020}\right)\left(1+x^{2}\right)}$ is equal to $k \pi$,
then the value of 16 k is equal to
25. The number of ordered pairs of positive integers (a, b), such that their Least Common

Multiple is the given positive integer
$7^{2} \times 11^{3} \times 19^{4}$, is equal to
(D) Watch Video Solution

