©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 66

Mathematics

1. Let $x_{1}, x_{2}, \ldots ., x_{3}$ be n observations such that
$\Sigma x_{i}^{2}=300$ and $\Sigma x_{1}=90$. Then a possible value of n among the following is
A. 25
B. 18
C. 29
D. 22

- Watch Video Solution

2. The domain of the function $f(x)=\frac{1}{\sqrt{[x]^{2}-[x]-20}}$ is (where, [.] represents the greatest integer function)
A. $(-\infty,-4) \cup[6, \infty)$
B. $(-\infty, 4] \cup[6, \infty)$
C. $(-\infty, 4) \cup(6, \infty)$
D. None of these

Answer: A

- Watch Video Solution

3. The value of $\lim _{x \rightarrow \infty}\left[\frac{e^{2}}{\left(1+\frac{2}{x}\right)^{x}}\right]^{x}$ is equal to
A. e^{2}
B. e^{-1}
C. $e^{\frac{1}{2}}$
D. $e^{-\frac{1}{2}}$

Answer: A

- Watch Video Solution

4. A person standing at the foot of a tower walks a distance of 3 meters from the tower and observes that the angle of elevation of the top of the tower is 30°. He then walks a distance 4 meters perpendicular to the previous direction and observes the angle of elevation to be β. Then, $\cos 2 \beta$ is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{11}{14}$

Answer: D

- Watch Video Solution

5. 12 people are asked questions in succession in a random order and exactly 3 out of 12 people know the answer. The probability that the $6^{\text {th }}$ person asked is the $2^{\text {nd }}$ person to know the answer, is
A. $\frac{10}{21}$
B. $\frac{3}{22}$
C. $\frac{7}{11}$
D. $\frac{5}{12}$

Answer: B

- Watch Video Solution

6. Let $P_{1}: x+y+2 z-4=0$ and $P_{2}: 2 x-y+3 z+5=0$ be the planes. Let $A(1,3,4)$ and $B(3,2,7)$ be two points in space. The equation of a third plane P_{3} through the line of intersection of P_{1} and P_{2} and parallel to AB is
A. $x-4 y-2 z+3=0$
B. $x-4 y-2 z+9=0$
C. $2 x-3 y+4 z+9=0$
D. $3 y+z-13=0$

Answer: D

- Watch Video Solution

7. A point P moves such that the chord of contact of P with respect to the circle $x^{2}+y^{2}=4$ passes through the point $(1,1)$. The coordinates of P when it is nearest to the origin are
A. $(1,2)$
B. $(2,2)$
C. $(3,3)$
D. $(\sqrt{2}, \sqrt{2})$

Answer: B

- Watch Video Solution

8. If A and B are square matrices of the same order such that $A=-B^{-1} A B$ then $(A+3 B)^{2}$ is equal to
A. $A+3 B$
B. $A^{2}+9 B^{2}$
C. $A^{2}+6 A B+A B^{2}$
D. 0

Answer: B

9. The point $P(2,1)$ is shifted through a distance of $3 \sqrt{2}$ units measured perpendicular to the line $x-y=1$ in the direction of decreasing ordinates, to reach at Q . The image of Q with respect to be line $y+x=1$ is
A. $(3,-4)$
B. $(-3,2)$
C. $(0,-1)$
D. $(5,-2)$

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 10. The value of } \lambda \in R \quad \text { such } \quad \text { that } \\
& (x, y, z) \neq(0,0,) \text { and }(2 \hat{i}+3 \hat{j}-4 \hat{k}) x+(3 \hat{i}-\hat{j}+2 \hat{k}) y+(i-2 \hat{j}) z=
\end{aligned}
$$ lies in

A. $(1,2)$
B. $(2,3)$
C. $(3,4)$
D. $(0,1)$

Answer: C

- Watch Video Solution

11. Let there be two prabolas $y^{2}=4 x$ and $y^{2}=-8 x$. Then the locus of the mid - points of the intercepts between the parabolas made on the lines parallel to the common axis is
A. $y^{2}=16 x$
B. $x^{2}=16 y$
C. $y^{2}=-8 x$
D. $x^{2}=8 y$

- Watch Video Solution

12. If $z_{1}=2+3 i, z_{2}=3-2 i$ and $z_{3}=-1-2 \sqrt{3} i$, then which of the following is true? (where, $i^{2}=-1$)
A. $\arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)$
B. $\arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(\frac{z_{3}}{z_{1}}\right)$
C. $\frac{1}{2} \arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)$
D. $2 \arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$

Answer: C

- Watch Video Solution

13. If $\left|\frac{x^{2}+m x+1}{x^{2}+x+1}\right|<3$ for all real x , then
A. $m<-1$
B. $-1<m<6$
C. $-1<m<5$
D. $m>6$

Answer: C

- Watch Video Solution

14. The arithmetic mean of two numbers is $18 \frac{3}{4}$ and the positive square root of their product is 15 . The larger of the two numbers is
A. 24
B. 25
C. 20
D. 30
15. The area (in sq. units) bounded by $x^{2}+y^{2}=1$ and the curve $y^{2} \geq x^{2}$, above the x-axis is
A. $\frac{1}{4}$
B. $\frac{\pi}{4}$
C. $\frac{1}{6}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

16. If $0<\alpha<\frac{\pi}{16}$ and $(1+\tan \alpha)(1+\tan 4 \alpha)=2$, then the value of α is equal to
A. $\frac{\pi}{18}$
B. $\frac{\pi}{20}$
C. $\frac{\pi}{24}$
D. $\frac{\pi}{30}$

Answer: B

- Watch Video Solution

17. If $f^{\prime}\left(x^{2}-4 x+3\right)>0$ for all $x \in(2,3)$ then $\mathrm{f}(\sin \mathrm{x})$ is increasing on
A. $x \in(0, \pi)$
B. $x \in\left(0, \frac{\pi}{2}\right)$
C. $x \in\left(\pi, \frac{5 \pi}{4}\right)$
D. $x \in\left(\frac{3 \pi}{2}, 2 \pi\right)$

Answer: D

18. If the value of the limit $\lim _{n \rightarrow \infty} \frac{1^{10}+2^{10}+\ldots n^{10}}{n^{11}}$ is equal to K , then the value of $\left[\frac{1}{2 K}\right]$ is equal to (where, [.] represents the greatest integer function)
A. 4
B. 5
C. 10
D. 11

Answer: B

Watch Video Solution

19. The solution of the differential equation
$y \cos x . d x=\sin x . d y+x y^{2} d x$ is (where, c is an arbitrary constant)
A. $\sin x=x y^{2}+c$
B. $2 \sin x=x^{2} y+c y$
C. $2 \sin x=x y^{2}+c$
D. $\sin x=x^{2} y+c y$

Answer: B

- Watch Video Solution

20. $5^{2} 5^{4} 5^{6} \ldots \ldots \ldots \ldots \ldots \ldots .5^{2 x}=(0.04)^{-28}$,
A. 7
B. 5
C. 6
D. 3

Answer: A

21. If $\tan ^{-1} \cdot \frac{x}{\pi} \leq \frac{\pi}{6}$, then the maximum vlaue of $\sqrt{3} x$ is (Use $\pi=3.14$)

- Watch Video Solution

22. Let A be a square matrix of order $3, A^{T}$ be the transpose matrix of matrix A and $\mathrm{AA}^{T}=4 I$. If $d=\left|\frac{2 A^{T}+\mathrm{AA}^{T}+a d j A}{2}\right|$, then the value of 12 d is equal to $(|A|<0)$

- Watch Video Solution

23. Values of m, for which the line $y=m x+2 \sqrt{5}$ is a tangent to the hyperbola $16 x^{2}-9 y^{2}=144$, are the roots of the equation $x^{2}-(a+b) x-4=0$, then the value of $(a+b)$ is equal to

- Watch Video Solution

24. If $K=.{ }^{11} C_{2}+2\left[\cdot{ }^{10} C_{2}+.{ }^{9} C_{2}+.{ }^{8} C_{2}+.{ }^{2} C_{2}\right]$ then the value of $\frac{K}{100}$ is equal to

Watch Video Solution

25. Let $\int \sin (2 x) \ln (\cos x) d x=f(x) \cos ^{2} x+C$, (where, C is the constant of integration) and $f(0)=\frac{1}{2}$, If $f\left(\frac{\pi}{3}\right)$ is equal to $\frac{1}{a}+\ln b$, then the value of $a+b$ is
