

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 66

Mathematics

1. Let x_1, x_2, \ldots, x_3 be n observations such that $\Sigma x_i^2 = 300$ and $\Sigma x_1 = 90$. Then a possible value of n among the following is

A. 25

B. 18

C. 29

D. 22

Answer: C

2. The domain of the function $f(x)=rac{1}{\sqrt{\left[x
ight]^2-\left[x
ight]-20}}$ is (where, [.~]

represents the greatest integer function)

A.
$$(\,-\infty,\,-4)\cup[6,\infty)$$

B.
$$(-\infty,4]\cup[6,\infty)$$

$$\mathsf{C}.\,(\,-\infty,4)\cup(6,\infty)$$

Watch Video Solution

D. None of these

Answer: A

A.
$$e^2$$

B.
$$e^{-1}$$

C. $e^{\frac{1}{2}}$
D. $e^{-\frac{1}{2}}$

Answer: A

4. A person standing at the foot of a tower walks a distance of 3 meters from the tower and observes that the angle of elevation of the top of the tower is 30° . He then walks a distance 4 meters perpendicular to the previous direction and observes the angle of elevation to be β . Then, $\cos 2\beta$ is equal to

A.
$$\frac{\sqrt{3}}{2}$$

B. $\frac{1}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$

D.
$$\frac{11}{14}$$

Answer: D

5. 12 people are asked questions in succession in a random order and exactly 3 out of 12 people know the answer. The probability that the 6^{th} person asked is the 2^{nd} person to know the answer, is

A.
$$\frac{10}{21}$$

B. $\frac{3}{22}$
C. $\frac{7}{11}$
D. $\frac{5}{12}$

Answer: B

6. Let $P_1: x + y + 2z - 4 = 0$ and $P_2: 2x - y + 3z + 5 = 0$ be the planes. Let A(1, 3, 4) and B(3, 2, 7) be two points in space. The equation of a third plane P_3 through the line of intersection of P_1 and P_2 and parallel to AB is

A.
$$x-4y-2z+3=0$$

B. x - 4y - 2z + 9 = 0

$$\mathsf{C.}\, 2x-3y+4z+9=0$$

D. 3y + z - 13 = 0

Answer: D

Watch Video Solution

7. A point P moves such that the chord of contact of P with respect to the circle $x^2 + y^2 = 4$ passes through the point (1, 1). The coordinates of P when it is nearest to the origin are

A. (1, 2)

B. (2, 2)

C. (3, 3)

D. $\left(\sqrt{2}, \sqrt{2}\right)$

Answer: B

Watch Video Solution

8. If A and B are square matrices of the same order such that $A = -B^{-1}AB$ then $(A + 3B)^2$ is equal to A. A + 3B

B. $A^2 + 9B^2$

 $\mathsf{C}.\,A^2 + 6AB + AB^2$

D. O

Answer: B

9. The point P(2, 1) is shifted through a distance of $3\sqrt{2}$ units measured perpendicular to the line x - y = 1 in the direction of decreasing ordinates, to reach at Q. The image of Q with respect to be line y + x = 1 is

- A. (3, -4)
- B. (-3, 2)
- C.(0, -1)
- D. (5, -2)

Answer: A

Watch Video Solution

10. The value of $\lambda \in R$ such that $(x, y, z) \neq (0, 0,)$ and $(2\hat{i} + 3\hat{j} - 4\hat{k})x + (3\hat{i} - \hat{j} + 2\hat{k})y + (i - 2\hat{j})z$ = lies in

A. (1, 2)

B. (2, 3)

C. (3, 4)

D. (0, 1)

Answer: C

Watch Video Solution

11. Let there be two prabolas $y^2 = 4x$ and $y^2 = -8x$. Then the locus of the mid - points of the intercepts between the parabolas made on the lines parallel to the common axis is

A.
$$y^2 = 16x$$

B. $x^2 = 16y$
C. $y^2 = -8x$
D. $x^2 = 8y$

Answer: A

12. If $z_1=2+3i, \, z_2=3-2i\,$ and $\, z_3=\, -1-2\sqrt{3}i,$ then which of the following is true? (where, $i^2=\, -1$)

A.
$$arg\left(\frac{z_2}{z_3}\right) = arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)$$

B. $arg\left(\frac{z_2}{z_3}\right) = arg\left(\frac{z_3}{z_1}\right)$
C. $\frac{1}{2}arg\left(\frac{z_2}{z_3}\right) = arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)$
D. $2arg\left(\frac{z_3}{z_2}\right) = arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$

Answer: C

13. If
$$\left|rac{x^2+mx+1}{x^2+x+1}
ight| < 3$$
 for all real x, then

A. m < -1B. -1 < m < 6C. -1 < m < 5D. m > 6

Answer: C

14. The arithmetic mean of two numbers is $18\frac{3}{4}$ and the positive square root of their product is 15. The larger of the two numbers is

A. 24

B. 25

C. 20

D. 30

Answer: D

15. The area (in sq. units) bounded by $x^2+y^2=1$ and the curve $y^2\geq x^2$, above the x - axis is

A.
$$\frac{1}{4}$$

B. $\frac{\pi}{4}$
C. $\frac{1}{6}$
D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

16. If $0<lpha<rac{\pi}{16}$ and (1+ anlpha)(1+ an4lpha)=2, then the value of lpha is equal to

A.
$$\frac{\pi}{18}$$

B.
$$\frac{\pi}{20}$$

C. $\frac{\pi}{24}$
D. $\frac{\pi}{30}$

Answer: B

17. If
$$f'ig(x^2-4x+3ig)>0$$
 for all $x\in(2,3)$ then f(sinx) is increasing on

A.
$$x \in (0,\pi)$$

B. $x \in \left(0,rac{\pi}{2}
ight)$
C. $x \in \left(\pi,rac{5\pi}{4}
ight)$
D. $x \in \left(rac{3\pi}{2},2\pi
ight)$

Answer: D

18. If the value of the limit $\lim_{n \to \infty} \frac{1^{10} + 2^{10} + \dots n^{10}}{n^{11}}$ is equal to K, then the value of $\left[\frac{1}{2K}\right]$ is equal to (where, [.] represents the greatest integer function)

A. 4

B. 5

C. 10

D. 11

Answer: B

Watch Video Solution

19. The solution of the differential equation $y \cos x$. $dx = \sin x$. $dy + xy^2 dx$ is (where, c is an arbitrary constant)

A.
$$\sin x = xy^2 + c$$

B.
$$2\sin x = x^2y + cy$$

C. $2\sin x = xy^2 + c$
D. $\sin x = x^2y + cy$

Answer: B

20.
$$5^2 5^4 5^6$$
..... $5^{2x} = (0.04)^{-28}$,
A. 7
B. 5
C. 6
D. 3

Answer: A

21. If $\tan^{-1} \cdot \frac{x}{\pi} \leq \frac{\pi}{6}$, then the maximum vlaue of $\sqrt{3}x$ is $(\text{Use } \pi = 3.14)$

Watch Video Solution

22. Let A be a square matrix of order 3, A^T be the transpose matrix of matrix A and $AA^T = 4I$. If $d = \left| \frac{2A^T + AA^T + adjA}{2} \right|$, then the value of 12d is equal to (|A| < 0)

Watch Video Solution

23. Values of m, for which the line $y = mx + 2\sqrt{5}$ is a tangent to the hyperbola $16x^2 - 9y^2 = 144$, are the roots of the equation $x^2 - (a+b)x - 4 = 0$, then the value of (a+b) is equal to

24. If
$$K = .^{11} C_2 + 2 [.^{10} C_2 + .^9 C_2 + .^8 C_2 + .^2 C_2]$$
 then the value of $\frac{K}{100}$ is equal to

Watch Video Solution

25. Let $\int \sin(2x)\ln(\cos x)dx = f(x)\cos^2 x + C$, (where, C is the constant of integration) and $f(0) = \frac{1}{2}$, If $f(\frac{\pi}{3})$ is equal to $\frac{1}{a} + \ln b$, then the value of a + b is