©゙’doubtnut India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 69

Mathematics

1. Let $P_{1}: x+y+2 z=3$ and $P_{2}: x-2 y+z 4$ be two
planes. Let $A(2,45)$ and $B(4,3,8)$ be two points in space. The equation of plane P_{3} through the line of intersection of P_{1} and P_{2} such that the length of the projection upon it of the line segment $A B$ is the least, is
A. $2 x-y+3 z=7$
B. $3 y+z+1=0$
C. $x+3 y+z+2=0$
D. $3 x-3 y+4 z-11=0$

Answer: A

- Watch Video Solution

2. If $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$, where $A^{x}=O$ (where, O is
a null matrix and $x<15, x \in N)$ then which of the
following is true?
A. Greatest value of x is 13
B. Sum of the values of x is 102
C. Difference between the largest and the smallest value of x is 10
D. Number of values of x is 7

Answer: B

- Watch Video Solution

3. The area (in sq. units) bounded by
$y=\max \left(\sin ^{2} x, \sin ^{4} x\right), x \in\left[0, \frac{\pi}{2}\right]$
with the x -axis, from $x=0$ to $x=\frac{\pi}{2}$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: C

D Watch Video Solution

4. A box contains 1 black and 1 white ball. A ball is drawn
randomly and replaced in the box with an additional ball of the same colour, then a second ball is drawn randomly
from the box containing 3 balls. The probability that the first drawn ball was white given that at least one of the two balls drawn was white is
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{5}{11}$

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 5. The number of real solution of } \\
& \cot ^{-1} \sqrt{x(x+3)}+\sin ^{-1} \sqrt{x^{2}+3 x+1}=\frac{\pi}{2} \text { is /are }
\end{aligned}
$$

A. 0
B. 1
C. 2
D. infinite

Answer: A

- Watch Video Solution

6. Suppose the family of lines $a x+b y+c=0$ (where a,
b, c are in artihmetic progression) be normal to a family of circles. The radius of the circle of the family which intersects the circle $x^{2}+y^{2}-4 x-4 y-1=0$ orthogonally is
A. $2 \sqrt{2}$ units
B. 2 units
C. $3 \sqrt{2}$ units
D. 4 units

Answer: A

- Watch Video Solution

7. If the function $f(x)=\frac{\sin 3 x+a \sin 2 x+b}{x^{3}}, x \neq 0$ is continuous at $x=0$ and $f(0)=K, \forall K \in R$, then $b-a$ is equal to
A. 4
B. $\frac{5}{2}$
C. 5
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

8. If $\mathrm{x}=6$ and $y=-2$ then $x-2 y=9$. The contrapositive of this statement is
A. If $x-2 y \neq 9$ then $x \neq 6$ or $y \neq-2$
B. If $x-2 y \neq 9$ then $x \neq 6$ and $y \neq-2$
C. If $x-2 y=9$ then $x=6$ and $y=-2$
D. None of these

- Watch Video Solution

9. The point on the ellipse $16 x^{2}+9 y^{2}=400$, where the ordinate decreases at the same rate at which the abscissa increases is (a, b), then $a+3 b$ can be
A. 16
B. 19
C. 6
D. 9

Answer: B
10. The integral $I=\int_{e}^{e+1} \frac{1+x^{2}}{1+x^{3}} d x$ satisfies
A. $I>2$
B. $I>e$
C. $I<0$
D. $I<1$

Answer: D

- Watch Video Solution

11. The following system of equations $5 x-7 y+3 z=3,5 x+y+3 z=7$ and $5 x+3 y+2 z=5$
is
A. Consistent with trivial solution
B. Consistent with a unique non trivial solution
C. Consistent with infinite solutions
D. Inconsistent with no solution

Answer: B

D Watch Video Solution

12. The order of the differential equation of the family of curves $y=\frac{a}{c} \sin (b x)+3^{d x}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are arbitrary constants is
A. 4
B. 3
C. 2
D. 1

Answer: B

D Watch Video Solution

13. The sum of the rational terms in the expansion of $(\sqrt{2}+\sqrt[5]{3})^{10}$ is
A. 31
B. 41
C. 51
D. 61

Answer: B

- Watch Video Solution

14. A committee of 12 members is to be formed from 9 women and 8 men. The number of ways of forming the committee with women in majority is
A. 1008
B. 2702
C. 6062
D. 2352

Answer: B

- Watch Video Solution

15. If both the roots of the equation $4 x^{2}-2 x+m=0$ lie in the interval $(-1,1)$, then
A. $-3<m<-2$
B. $0<m<2$
C. $2<m<\frac{5}{2}$
D. $-2<m \leq \frac{1}{4}$

Answer: D
16. The number of solutions in the interval $[0, \pi]$ of the equation $\sin ^{3} x \cos 3 x+\sin 3 x \cos ^{3} x=0$ is equal to
A. 7
B. 6
C. 5
D. 4

Answer: C

17. Let $A(2,0)$ and $B(-2,0)$ are two fixed vertices of
$\Delta A B C$. If the vertex C moves in the first quadrant in such a way that $\cot A+\cot B=2$, then the locus of the point C is
A. $y=2$
B. $x=4$
C. $x=2$
D. $y=1$

Answer: A
18. For two data sets, each with size 5 , the variances are given to be 3 and 4 and the corresponding means are given 2 and 4, respectively. The variance of the combined data set is
A. $\frac{11}{2}$
B. $\frac{9}{2}$
C. $\frac{13}{2}$
D. $\frac{5}{2}$

Answer: B
19. If a tangent having slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ is normal to the circle $x^{2}+y^{2}+b x+1=0$, then the vlaue of $4 a^{2}+b^{2}$ is equal to
A. 4
B. 2
C. 16
D. 8

Answer: C

20. If $\alpha, \beta \in C$ are the distinct roots of the equation $x^{2}-x+1=0$, then $\alpha^{101}+\beta^{107}$ is equal to
A. 2
B. -1
C. 0
D. 1

Answer: D

D Watch Video Solution

21. The volume of a tetrahedron determined by the vectors $\vec{a}, \vec{b}, \vec{c}$ is $\frac{3}{4}$ cubic units. The volume (in cubic
units) of a tetrahedron determined by the vectors $3(\vec{a} \times \vec{b}), 4(\vec{b} \times c)$ and $5(\vec{c} \times \vec{a})$ will be

- Watch Video Solution

22. The value of $\lim _{x \rightarrow 0}\left(\frac{(1-\cos 4 x)(5+\cos x)}{x \tan 5 x}\right)$ is equal to

D Watch Video Solution

23. If $I=\int \frac{1+x^{4}}{\left(1-x^{4}\right)^{\frac{3}{2}}} d x=\frac{1}{\sqrt{f(x)}}+C$ (where, C is the constant of integration) and $f(2)=\frac{-15}{4}$, then the value of $2 f\left(\frac{1}{\sqrt{2}}\right)$ is
24. If x, y are positive real numbers and $3 x+4 y=5$, then the lagest possible value of $16 x^{2} y^{3}$ is

- Watch Video Solution

25. Let the radius of the circle touching the parabola $y^{2}=x$ at (1, 1) and having the directrix of $y^{2}=x$ at $(1,1)$ and having the directrix of $y^{2}=x$ as its normal is equal to $k \sqrt{5}$ units, then k is equal to

- Watch Video Solution

