đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 70

Mathematics

1. The term independent of x in the expansion of
$(1-x)^{2}\left(x+\frac{1}{x}\right)$, is
A. . ${ }^{10} C_{5}$
B. . ${ }^{10} C_{6}$
C. . ${ }^{11} C_{5}$
D. . ${ }^{17} C_{7}$

Answer: C

D Watch Video Solution

2. A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box, if atleast one black ball is to be included in the draw is
A. 64
B. 74
C. 54
D. 84

Answer: A

- Watch Video Solution

3. The area (in sq. units) bounded by
$y=|\ln x|$ form $x=e$ to $x=\pi$ with the x -axis is
A. $\ln \pi$
B. $\pi \ln \pi$
C. $e \ln \pi$
D. $\pi \ln \pi-\pi$

Answer: D

- Watch Video Solution

4. If $\cos x=\tan y, \cos y=\tan z$ and $\cos z=\tan x$, then $\sin x=2 \sin \theta$ where θ is (where, x, y, z, θ are acuate angles)
A. 15°
B. 18°
C. $22 \frac{1^{\circ}}{2}$
D. 75°

Answer: B

- Watch Video Solution

5. Let $f(x)$ be a differentiable function on $x \in R$ such
that $\quad f(x+y)=f(x) . F(y)$ for all, x, y.
$f(0) \neq 0, f(5)=12$ and $f^{\prime}(0)=16$, then $f^{\prime}(5)$ is equal to
A. 190
B. 186
C. 196
D. 192

Answer: D
6. Let $f: R \rightarrow B$, be a function defined $f(x)=\tan ^{-1} \cdot \frac{2 x}{\sqrt{3}\left(1+x^{2}\right)}$, then f is both one - one and onto when B , is the interval
A. $\left(0, \frac{x}{6}\right)$
B. $\left[0, \frac{\pi}{6}\right)$
C. $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$
D. $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$

Answer: C

- Watch Video Solution

7. Mean deviation of the series
$a^{2}, a^{2}+d, a^{2}+2 d, \ldots \ldots \ldots \ldots \ldots, a^{2}+2 n d$ from
its mean is
A. $\frac{(n+1) d}{(2 n+1)}$
B. $\frac{n d}{2 n+1}$
C. $\frac{n(n+1) d}{(2 n+1)}$
D. $\frac{(2 n+1) d}{n(n+1)}$

Answer: C
8. A tower leans towards west making an angle α with the vertical. The angular elevation of B, the top most point of the tower, is 75° as observed from a point C due east of A at a distance of 20 units. If the angular elevation of B from a point due east of C at a distance of 20 units from C is 45°, then $\tan \alpha$ is equal to
A. $\frac{\sqrt{3}+1}{2}$
B. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
C. $3-2 \sqrt{3}$
D. $\frac{\sqrt{3}-1}{2}$

Answer: C

9. The acute angle of intersection of the curves $x^{2} y=1$ and $y=x^{2}$ in the first quadrant is θ, then $\tan \theta$ is equal to
A. 1
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{4}{3}$

Answer: D
10. Let $\quad I=\int \frac{d x}{1+3 \sin ^{2} x}=\frac{1}{2} \tan ^{-1}(2 f(x))+C$
(where, C is the constant of integration). If $f\left(\frac{\pi}{4}\right)=1$, then the fundamental period of $y=f(x)$ is
A. $\frac{\pi}{4}$
B. π
C. 2π
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

11. Let a, b, c and d are in a geometric progression such that $a<b<c<d, a+d=112$ amd $b+c=48$. If the geometric progression is continued with a as the first term, then the sum of the first six terms is
A. 1156
B. 1256
C. 1356
D. 1456

Answer: D

12. The solution of the differential equation $\sin y e^{x} d x-e^{x} \cos y d y=\sin ^{2} y d x$ is (where, c is an arbitrary constant)
A. $e^{x} \sin y=x+c$
B. $e^{x}=(x+c) \sin y$
C. $e^{x} \cdot x=\sin y+c$
D. $e^{x} \cdot \sin y=x^{2}+c$

Answer: B

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ be three units vectors perpendicular to each other,
$|(2 \vec{a}+3 \vec{b}+4 \vec{c}) \cdot(\vec{a} \times \vec{b}+5 \vec{b} \times \vec{c}+6 \vec{c} \times \vec{a})|$
is equal to
A. 18
B. 0
C. 4
D. 32

Answer: D
14. Let $A=\left(a_{i j}\right)_{3 \times 3}$ and $B=\left(b_{i j}\right)_{3 \times 3}$, where $b_{i j}=\frac{a_{i j}+a_{j i}}{2} A a i, j$. Number of such matrices A whose elements are selected from the set $\{0,1,2,3\}$ such that $A=B$. Are
A. 2^{9}
B. 2^{12}
C. 2^{6}
D. 2^{8}

Answer: B

- Watch Video Solution

15. A line passes through the point $A(2,3,5)$ and is parallel to the vector $2 \hat{i}-\hat{j}+\hat{k}$. If P is a point on this line such that $A P=2 \sqrt{6}$, then the coordinates of point P can be
A. $(4,2,6)$
B. $(6,1,7)$
C. $(-2,5,-3)$
D. $(2,3,5)$

Answer: B

16. Let $P Q$ be the common chord of the circles
$S_{1}: x^{2}+y^{2}+2 x+3 y+1=0$
and
$S_{2}: x^{2}+y^{2}+4 x+3 y+2=0$, then the perimeter (in units) of the triangle $C_{1} P Q$ is equal to
$\left(\right.$ where, $\left.C_{1}=\left(-1, \frac{-3}{2}\right)\right)$
A. $\frac{9}{2}$
B. $2 \sqrt{2}+3$
C. $3 \sqrt{2}+3$
D. $\frac{3}{2}+2 \sqrt{2}$

Answer: B

17. If the segment intercepted between the lines
$x+6 y-13=0$ and $x-y+3=0$ is bisected at $(6$,
8), then the square of the length of segment is
A. 268
B. 244
C. 212
D. 252

Answer: B

- Watch Video Solution

18. If A and B are square matrices such that
$A^{2020}=O$ and $A B=A+B$, then $|B|$ is equal to
(where, O is a null matrix)
A. 0
B. 1
C. -1
D. 4

Answer: A
(Watch Video Solution
19. Variable ellipses are drawn with $x=-4$ as a directrix and origin as corresponding foci. The locus of extremities of minor axes of these ellipses is:
A. 1
B. 2
C. $\sqrt{2}$
D. $\frac{1}{2}$

Answer: A
(D) Watch Video Solution
20. Let the locus of any point $\mathrm{P}(\mathrm{z})$ in the argand plane is $\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$. If O is the origin, then the value of $\frac{\max \cdot(O P)+\min \cdot(O P)}{2}$ is
A. $5 \sqrt{2}$
B. $5+\frac{5}{\sqrt{2}}$
C. $5+5 \sqrt{2}$
D. $10-\frac{5}{\sqrt{2}}$

Answer: B

- Watch Video Solution

21. The number of values of x lying in the inteval
$-(2 \pi, 2 \pi)$ satisfying the equation
$1+\cos 10 x \cos 6 x=2 \cos ^{2} 8 x+\sin ^{2} 8 x$ is equal to

- Watch Video Solution

22. If $\left[\sin ^{-1} x\right]^{2}+\left[\sin ^{-1} x\right]-2 \leq 0 \quad$ (where, \quad. $]$ represents the greatest integral part of x), then the maximum value of x is

- Watch Video Solution

23. If $I=\int_{0}^{16} \frac{x^{\frac{1}{4}}}{1+\sqrt{x}} d x=k+4 \tan ^{-1} m$, then $3 k-m$ is equal to

- Watch Video Solution

24. There are two red, two blue, two white, and certain number (greater than 0) of green socks n a drawer. If two socks are taken at random from the drawer4 without replacement, the probability that they are of the same color is $1 / 5$, then the number of green socks are \qquad .

- Watch Video Solution

25. A circle is drawn whose centre is on the x - axis and it touches the y-axis. If no part of the circle lies outside the parabola $y^{2}=8 x$, then the maximum possible radius of the circle is

D Watch Video Solution

