©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 72

Mathematics

1. The line $x=c$ cuts the triangle with corners $(0,0),(1,1)$ and $(9,1)$ into two regions. For the area of the two regions to the same, then c must be equal to
A. 30
B. 6
C. $\frac{7}{2}$
D. 15

Answer: B

- Watch Video Solution

2. The distance of the y-axis from from the center of the circle which lies in the first quadrant (see figure) and tangent to the lines $y=\frac{1}{2} x, y=4$ and the x-axis is

A. $4+2 \sqrt{5}$ units
B. $4-\frac{8 \sqrt{5}}{5}$ units
C. $2+\frac{6 \sqrt{5}}{5}$ units
D. $4-2 \sqrt{5}$ units

Answer: A

- Watch Video Solution

3. A tangent is drawn to the parabola $y^{2}=8 x$ at $\mathrm{P}(2,4)$ to intersect the x-axis at Q, from which another tangent is drawn to the parabola to touch it at R. If the normal at R intersects the parabola again at S , then the coordinates of S are
A. $(6,4)$
B. $(18,12)$
C. $(8,8)$
D. $(8,6)$

Answer: B

4. The tangents at the extremities of the latus rectum of the ellipse $3 x^{2}+4 y^{2}=12$ form a rhombus PQRS. Area (in sq. units) of the rhombus PQRS outside and ellipse is equal to
A. $8-2 \sqrt{3} \pi$
B. $12-2 \sqrt{3} \pi$
C. $14-\pi$
D. $16-2 \sqrt{3} \pi$

Answer: D

- Watch Video Solution

5. Consider the function $f(x)=\min \left\{\left|x^{2}-4\right|,\left|x^{2}-1\right|\right\}$, then the number of points where $f(x)$ is non - differentiable is/are
A. 0
B. 7
C. 6
D. 4

Answer: C

D Watch Video Solution

6. If $f: A \rightarrow B$ defined as $f(x)=2 \sin x-2 \cos x+3 \sqrt{2}$ is an invertible function, then the correct statement can be
A. $A=\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right], B=[2 \sqrt{2}, 5 \sqrt{5}]$
B. $A=\left[\frac{-\pi}{4}, \frac{5 \pi}{4}\right], B=[\sqrt{2}, 5 \sqrt{2}]$
C. $A=\left[\frac{-\pi}{4}, \frac{3 \pi}{4}\right], B=[\sqrt{2}, 4, \sqrt{2}]$
D. $A=\left[\frac{-\pi}{4}, \frac{3 \pi}{4}\right], B=[\sqrt{2}, 5 \sqrt{2}]$

Answer: D
7. The average weight of students in a class of 32 students is 40 kg . If the weight of the teacher be included, the average rises by $\frac{1}{3} k g$, then the weight of the teacher is
A. 40.5 kg
B. 50 kg
C. 41 kg
D. 51 kg

Answer: D

- Watch Video Solution

8. An observer finds that the angular elevation of a tower is θ. On advancing 3 m towards the tower, the elevation is 45° and on advancing 2 m further more towards the tower, the elevation is
$90^{\circ}-\theta$. The height of the tower is (assume the height of observer is negligible and observer lies on the same level as the foot of the tower)
A. $2 m$
B. 4 m
C. 6 m
D. 8 m

Answer: C

- Watch Video Solution

9. Let $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\hat{j}-4 \hat{k}$ and non-zero vector \vec{c} are such that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, then vector \vec{c} may be
A. $4 \hat{i}-2 \hat{j}+6 \hat{k}$
B. $4 \hat{i}+2 \hat{j}+6 \hat{k}$
C. $\hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}-4 \hat{j}+\hat{k}$

Answer: A

- Watch Video Solution

10. Let a, b and c are the roots of the equation $x^{3}-7 x^{2}+9 x-13=0$ and A and B are two matrices given by $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ and $B=\left[\begin{array}{lll}b c-a^{2} & c a-b^{2} & a b-c^{2} \\ c a-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & c a-b^{2}\end{array}\right]$, then the
value $|A||B|$ is equal to
A. -154
B. $-(154)^{3}$
C. -22
D. $-(22)^{3}$

Answer: B

- Watch Video Solution

11. A plane P_{1} has the equation $4 x-2 y+2 z=3$ and P_{2} has the equation $-x+k y-2 z=7$. If the angle between P_{1} and P_{2} is $\frac{2 \pi}{3}$, then the value of k can be
A. 1
B. 2
C. -17
D. 17

Answer: D

- Watch Video Solution

12. Let $A=\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$, where $i^{2}=-1$. Let I denotes the identity matrix of order 2 , then $I+A+A^{2}+A^{3}+\ldots \ldots . . A^{110}$ is equal to
A. $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$
B. $\left[\begin{array}{ll}0 & 0 \\ 0 & \end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$

Answer: A

- Watch Video Solution

13. The inequality . ${ }^{n+1} C_{6}-\cdot{ }^{n} C_{4}>\cdot{ }^{n} C_{5}$ holds true for all n greater than \qquad .
A. 8
B. 9
C. 7
D. 10

Answer: D

D Watch Video Solution

14. Find the values of m for which roots of equation $x^{2}-m x+1=0$ are less than unity.
A. $m \leq-2$
B. $m>2$
C. $1 \leq m, \leq 3$
D. $0 \leq m \leq \frac{5}{2}$

Answer: A

15. The number of solution of the equation $\sin ^{3} x \cos x+\sin ^{2} x \cos ^{2} x+\cos ^{3} x \sin x+1=0$ in the interval $[0,2 \pi]$ is equal to
A. 0
B. 2
C. 4
D. 8

Answer: A

- Watch Video Solution

16. The solution of the differential equation

$$
\frac{d y}{d x}+\frac{x y}{1-x^{2}}=x \sqrt{y},(|x|<1) \text { is } \sqrt{y}=-\frac{f(x)}{3}+C\left(1-x^{2}\right)^{\frac{1}{4}}
$$

where $f\left(\frac{1}{2}\right)=\frac{3}{4}$ and C is an arbitrary constant. Then, the value of $f\left(-\frac{1}{2}\right)$ is
A. $-\frac{3}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. $\frac{3}{2}$

Answer: B

Watch Video Solution
17. The limit $L=\lim _{n \rightarrow \infty} \Sigma_{r=1}^{n} \frac{n}{n^{2}+r^{2}}$ satisfies
A. $\frac{\pi}{L}<6$
B. $\frac{\pi}{L}<2$
C. $\frac{\pi}{L}>3$
D. $\frac{\pi}{L}<1$

Answer: C

18. If the integral $I=\int \frac{x^{5}}{\sqrt{1+x^{3}}} d x=K \sqrt{x^{3}+1}\left(x^{3}-2\right)+C$, (where, C is the constant of integration), then the value of 9 K is equal to
A. 4
B. 2
C. 6
D. 10

Answer: B

- Watch Video Solution

19. The function $f(x)=2 x^{3}-3(a+b) x^{2}+6 a b x$ has a local maximum at $x=a$, if
A. $a>b$
B. $a<b$
C. $a>0$
D. $a<0$

Answer: B

- Watch Video Solution

20.

$A=\left\{x: x=3^{n}-2 n-1, n \in N\right\}$ and $B=\{x: x=4(n-1), n \in N\}$
. Then
A. $A \subset B$
B. $B \subset A$
C. $A \cup B=A$
D. $A \cap B=B$

Answer: A

- Watch Video Solution

21. If the area bounded by the curves $x^{2}+y^{2} \leq 4, x+y \leq 2$, and $y \geq 1$ is $\frac{2 \pi}{K}-\frac{\sqrt{K}}{2}-\frac{1}{2} s q$. units, then the value of K is equal to

(D) Watch Video Solution

22. The second term of an infinte geometric progression is 2 and its sum to infinity is 8 . The first term is

- Watch Video Solution

23. The probability of a bomb hitting a bridge is $\frac{2}{3}$. Two direct hits are needed to destroy the bridge. The minimum number of bombs
required such that the probability of bridge being destroyed is greater than $\frac{3}{4}$, is
(D) Watch Video Solution
24. The value of $\lim _{x \rightarrow 0} \frac{9 \ln (2-\cos 25 x)}{5 \ln ^{2}(\sin 3 x+1)}$ is equal to

- Watch Video Solution

25. The number of distinct complex number(s) z, such that $|z|=1$ and z^{3} is purely imagninary, is/are equal to
