© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 73

Mathematics
1.

The
value
of
$(n+2) \cdot{ }^{n} C_{0} \cdot 2^{n+1}-(n+1) \cdot{ }^{n} C_{1} \cdot 2^{n}+(n) \cdot{ }^{n} C_{2} \cdot 2^{n-1}-\ldots .$. to $(n+1)$
terms is equal to
A. 4
B. 4 n
C. $4(n+1)$
D. $2(n+2)$

Answer: C

- Watch Video Solution

2. Let a, b and c satisfy the system of equations
$a+2 b+3 c=6,4 a+5 b+6 c=12 \operatorname{rad} 6 a+9 b=4$. If the roots of the equation $(a+b+c) x^{2}-a b c x \quad$ are $\quad \alpha \quad$ and $\beta+\left(a^{-1}+b^{-1}+c^{-1}\right)=0$ then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to
A. 243
B. 100
C. $\frac{243}{12}$
D. $\frac{100}{243}$

Answer: D

D Watch Video Solution

3. If a, b, andc are in A.P. and one root of the equation $a x^{2}+b c+c=0 i s 2$, the find the other root.
A. $\frac{3}{4}$
B. $-\frac{3}{4}$
C. $-\frac{5}{4}$
D. $-\frac{5}{2}$

Answer: C

- Watch Video Solution

4. If $\sin ^{6} \theta+\cos ^{6} \theta+k \cos ^{2} 2 \theta=1$, then $k=$
A. $\frac{1}{2} \tan ^{2} 2 \theta$
B. $\frac{1}{4} \tan ^{2} 2 \theta$
C. $4 \cot ^{2} \theta$
D. $\frac{3}{4} \tan ^{2} 2 \theta$

Answer: D

- Watch Video Solution

5. Let $f(x)=|x|$ and $g(x)=[x]$, (where [.] denotes the greatest integer function) Then, $(f \circ g)^{\prime}(-1)$ is
A. 0
B. does not exist
C. -1
D. 1

Answer: B

- Watch Video Solution

6. The length of the radius of the circle which touches the x - axis at the point $(1,0)$ and passes through the point $(2,3)$ is
A. $\frac{10}{3}$ units
B. $\frac{3}{5}$ units
C. $\frac{6}{5}$ units
D. $\frac{5}{3}$ units

Answer: D

D Watch Video Solution

7. Let $x_{1}, x_{2}, \ldots x_{n}$ be n observations such that $\Sigma x_{i}^{2}=500$ and $\Sigma x_{1}=100$. Then, an impossible value of n among the following is
A. 24
B. 18
C. 29
D. 22

D Watch Video Solution

8. Two vertical poles AL and BM of height 25 m and 100 m respectively stand apart on a horizontal plane. If A, B be the feet of the poles and $A M$ and $B L$ intersect at P, then the height of P from the horizontal plane is equal to
A. 20 m
B. 18 m
C. 16 m
D. 15 m

Answer: A

9. A multiple - choice question has 5 options of which only one is correct. If a student does home work, then he is sure to identify the correct answer, otherwise the answer is chosen at random. Let A ne the event that the student does his home work and B be the event that the student answers correctly. If $P(A)=\frac{2}{3}$, then $P\left(\frac{A}{B}\right)$ is euqal to
A. $\frac{10}{11}$
B. $\frac{4}{5}$
C. $\frac{3}{7}$
D. $\frac{6}{7}$

Answer: A

- Watch Video Solution

10. If the line $\frac{x-1}{1}=\frac{y-k}{-2}=\frac{z-3}{\lambda}$ lies in the plane $3 x+4 y-2 z=6$, then $5|k|+3|\lambda|$ is equal to
A. 75
B. $\frac{75}{4}$
C. 15
D. $\frac{5}{2}$

Answer: B

- Watch Video Solution

11.

$a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1, b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=4, c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=9, a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=$
, then $|A|^{4}$ is equal to
A. 36
B. 49
C. 1296
D. 216

Answer: C

- Watch Video Solution

12. The number of ways of selecting two distinct numbers from the first 15 natural numbers such that their sum is a multiple of 5 , is equal to
A. 20
B. 36
C. 21
D. 16

Answer: C

- Watch Video Solution

13. The number of possible straight lines passing through point $(2,3)$ and forming a triangle with coordiante axes whose area is 12 sq. unit is: a. one
b. two c. three d. four
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

14. If p and q are logical statements, then $(p \wedge q) \rightarrow(p \rightarrow q)$ is equivalent to
A. $p \wedge q$
B. $p \rightarrow(p \vee q)$
C. $p \vee q$
D. $(p \vee q) \leftrightarrow(p \wedge q)$

Answer: B

D Watch Video Solution

15. The curve having differential equation, $x \cos y \frac{d y}{d x}+\sin y=x$ and passing through the origin, also passes through
A. $\left(2, \frac{\pi}{2}\right)$
B. $\left(-2, \frac{\pi}{2}\right)$
C. $\left(4, \frac{3 \pi}{2}\right)$
D. $\left(-8, \frac{3 \pi}{2}\right)$

Answer: A

- Watch Video Solution

16. If z_{1}, z_{2} and z_{3} are the vertices of a triangle in the argand plane such that $\left|z_{1}-z_{2}\right|=\left|z_{1}-z_{3}\right|$, then $\left|\arg \left(\frac{2 z_{1}-z_{2}-z_{3}}{z_{3}-z_{2}}\right)\right|$ is
A. $\frac{\pi}{3}$
B. 0
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: C

- Watch Video Solution

17. The range of the function $f(x)=x^{2} \ln (x)$ for $x \in[1, e]$ is $[a, b]$, where $a+b$ is equal to
A. e^{2}
B. $e^{2}+1$
C. $e+1$
D. $2 e^{2}$
18. Consider

$$
I_{1}=\int_{10}^{20} \frac{\ln x}{\ln x+\ln (30-x)} d x \quad \text { and }
$$

$I_{2}=\int_{20}^{30} \frac{\ln x}{\ln x+\ln (50-x)} d x$. Then, the value of $\frac{I_{1}}{I_{2}}$ is
A. 10
B. 2
C. 1
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

19. The length of the intercept cut by the line $4 x+4 \sqrt{3} y-1=0$ between the curve $y^{2}=x$ is equal to
B. 9
C. 12
D. 16

Answer: A

- Watch Video Solution

20. The area (in sq. units) bounded by $[|x|]+[|y|]=2$ in the first and third quardant is (where [.] is the greatest integer function).
A. 4
B. 3
C. 6
D. 10

Answer: C

21. Let an ant starts from the origin (O) and travels 2 units on negative x axis, 3 units on positive y - axis and travels 3 units on negative z - axis to reach at point A. If $\vec{a}=\hat{i}-3 \hat{j}+2 \hat{k}$ and \vec{b} be such that the resultant of \vec{a} and \vec{b} is $3 \hat{i}-4 \hat{j}+\hat{k}$, then $|\overrightarrow{O A} \times(\vec{a} \times \vec{b})|^{2}$ is equal to

D Watch Video Solution

22. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinates axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The length (in units) of the major axis of ellipse E_{2} is

- Watch Video Solution

23. Let $I=\int \frac{d x}{\left(\cos x-\sin x^{2}\right)}=\frac{1}{f(x)}+C$ (where, C is the constant of integration). If $f\left(\frac{\pi}{3}\right)=1-\sqrt{3}$, then the number of solution(s) of
$f(x)=2020$ in $x \in\left(\frac{\pi}{2}, \pi\right)$ is/are

- Watch Video Solution

24. If
the
$f(x)=\cos ^{-1}\left(x^{\frac{3}{2}}-\sqrt{1-x-x^{2}+x^{3}}\right)($ where,$\quad \forall 0<x<1)$,
then the value of $\left|\sqrt{3} f^{\prime}\left(\frac{1}{2}\right)\right|$ is equal to (take $\sqrt{3}=1.73$)

- Watch Video Solution

25. Let three positive numbers $\mathrm{a}, \mathrm{b} \mathrm{c}$ are in geometric progression, such that $\mathrm{a}, b+8, \mathrm{c}$ are in arithmetic progression and $a, b+8, c+64$ are in geometric progression. If the arithmetic mean of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is k , then $\frac{3}{13} k$ is equal to

- Watch Video Solution

