©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 77

Mathematics

1. A straight line l_{1} with equation $x-2 y+10=0$ meets the circle with equation $x^{2}+y^{2}=100$ at B in the first quadrant. A line through B , perpendiclar to l_{1} cuts the x axis and y - axis at P and Q respectively. The area (in sq. units) of the triangle OPQ is (where, O is the origin)
A. 120
B. 150
C. 100
D. 125

Answer: C

- Watch Video Solution

2.

$L_{1}: \frac{x-2}{2}=\frac{y-3}{-1}=\frac{z-1}{3}, L_{2}: \frac{x-2}{-1}=\frac{y-3}{3}=\frac{z-1}{\frac{5}{3}}$
and $\quad L_{3}: \frac{x-2}{-32}=\frac{y-3}{-19}=\frac{z-1}{15}$ are three lines
intersecting each other at the point P and a given plane at
A, B, C
$P A=2, P B=3, P C=6$. The volume (in cubic units) of the tetrahedron $P A B C$ is
A. 2
B. 18
C. 6
D. 10

Answer: C

- Watch Video Solution

3. The area bounded by $y=||x|-1|$ with the x - axis from $x=0$ to $x=1$ is k square units, then 4 k is equal to
B. 2
C. 3
D. 4

Answer: B

(Watch Video Solution

4. If z is a complex number satisfying the equation $|z-(1+i)|^{2}=2$ and $\omega=\frac{2}{z}$, then the locus traced by ' ω ' in the complex plane is
A. $x-y-1=0$
B. $x+y-1=0$
C. $x-y+z=0$
D. $x+2 y+1=0$

Answer: A

(D) Watch Video Solution

5. The number of ways of arranging 18 boys such that 3 particular boys are always separate is equal to
A. 18 ! -16 ! 3 !
B. $16!{ }^{17} P_{3}$
C. $15!^{16} P_{13}$
D. $17!{ }^{17} P_{3}$
6. If $S=\sum_{n=1}^{9999} \frac{1}{(\sqrt{n}+\sqrt{n+1})(\sqrt[4]{n}+\sqrt[4]{n+1})}$, then the value of S is equal to
A. 9
B. 99
C. 999
D. 9999

Answer: A
7. Find the number of solution of the equation $\cot ^{2}(\sin x+3)=1$ in $[0,3 \pi]$.
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

8. A special fair cubic die is rolled which has one blue side, two red sides and three yellow sides. The result is the colour of the top side after the die is rolled. If the die is
rolled 8 times, then the probability of blue colour coming at least twice is
A. $\frac{13 \times 5^{7}}{6^{8}}$
B. $\frac{6^{8}-13 \times 5^{7}}{6^{8}}$
C. $\frac{8 \times 5^{7}}{6^{8}}$
D. $1-\frac{8 \times 5^{7}}{6^{8}}$

Answer: B

(Watch Video Solution

9. If the angles between the vectors \vec{a} and \vec{b}, \vec{b} and \vec{c}, \vec{c} and \vec{a} be $\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{3}$ respectively, then
the angle which \vec{a} makes with the plane containing \vec{b} and \vec{c} is
A. $\sin ^{-1} \sqrt{\frac{\sqrt{2}}{3}}$
B. $\sin ^{-1} \cdot \frac{2}{3}$
C. $\sin ^{-1} \cdot \frac{1}{4}$
D. $\sin ^{-1} \sqrt{\frac{2}{3}}$

Answer: A

- Watch Video Solution

10. The x - intercept of the common tangent to the parabolas $y^{2}=32 x$ and $x^{2}=108 y$ is
A. -18
B. -12
C. -9
D. -6

Answer: A

(Watch Video Solution

11. Let $A(x)=\left[\begin{array}{ccc}0 & x-2 & x-3 \\ x+2 & 0 & x-5 \\ x+3 & x+5 & 0\end{array}\right]$,
then the matrix $A(0)(A(0))^{T}$ is a
A. null matrix
B. symmetric matrix
C. skew symmetric matrix
D. non singular matrix

Answer: B

- Watch Video Solution

12. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation R is
A. Reflexive
B. Transitive
C. Not symmetric
D. A function
13. The domain of definiton of the function $f(x)=\frac{1}{\sqrt{x^{12}-x^{9}+x^{4}-x+1}}$, is
A. $(-\infty,-1)$
B. $(1, \infty)$
C. ($-1,1$)
D. $(-\infty, \infty)$

Answer: D

- Watch Video Solution

14. If $f(x)=\left\{\begin{array}{ll}x^{2} & : \quad \text { when } \mathrm{x} \text { is rational } \\ 2-x & : \quad \text { when } \mathrm{x} \text { is irrational }\end{array}\right.$, then
A. $f(x)$ is continuous for all real x
B. $f(x)$ is discontinuous for all real x
C. $f(x)$ is continuous only at $x=1,-2$
D. $f(x)$ is discontinuous only at $x=1,-2$

Answer: C

- Watch Video Solution

15. The median of a set of 9 distinct observations is 20.5 . If each of the largest 4 observations of the set is increased by 4, then the median of the new set
A. in increased by 4
B. is decreased by 4
C. is two times the original median
D. remains the same as that of the original set

Answer: D

- Watch Video Solution

> 16. The range of the function $y=2 \sin ^{-1}\left[x^{2}+\frac{1}{2}\right]+\cos ^{-1}\left[x^{2}-\frac{1}{2}\right]$ is (where,
denotes the greatest integer function)
A. $(0, \pi)$
B. $\left[\pi, \frac{3 \pi}{2}\right]$
C. $\{\pi\}$
D. $\left\{\pi, \frac{3 \pi}{2}\right\}$

(D) Watch Video Solution

17. Which of the following functions satisfies all contains of the Rolle's theorem in the invervals specified?
A. $f(x)=x^{\frac{1}{2}}, x \in[-2,3]$
B. $f(x)=\sin x, x \in\left[-\pi, \frac{\pi}{6}\right]$
C. $f(x)=\ln \left(\frac{x^{2}+a b}{x(a+b)}\right), x \in[a, b], 0<a<b$
D. $f(x)=e^{x^{2}-x}, x \in[0,4]$

Answer: C

18. Consider the definite integrals $A=\int_{0}^{\pi} \sin x \cos x^{2} x d x$ and $B=\int_{0}^{\frac{\pi}{2}} \sin x \cos ^{2} x d x$. Then,
A. $A=2 B$
B. $A=\pi B$
C. $A=\frac{\pi}{2} B$
D. $B=2 A$

Answer: B

(Watch Video Solution

19. If the circle whose diameter is the major axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ meets the minor axis at
point P and the orthocentre of $\Delta P F_{1} F_{2}$ lies on the ellipse, where F_{1} and F_{2} are foci of the ellipse, then the square of the eccentricity of the ellipse is
A. $\frac{\sqrt{5}-1}{2}$
B. $\sqrt{3}-1$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer: A

- Watch Video Solution

20. The equation of the curve satisfying the differential equation $\quad x e^{x} \sin y d y-(x+1) e^{x} \cos y d x=y d y \quad$ and
passing through the origin is
A. $x e^{x}=y^{2} \cos y$
B. $2 x e^{x}=y \cos y$
C. $2 x e^{x} \cos y+y^{2}=0$
D. $2 x e^{x} \cos y=y^{2}$

Answer: C

- Watch Video Solution

21. Let $\sqrt{a}+\sqrt{d}=\sqrt{c}+\sqrt{b}$ and $a d=b c$, where $a, b, c, \in R^{+}$. If the family of lines $\left(a^{2} x+b^{2} y+c^{2}\right)+d^{2} x=0$ passes through a fixed point $\left(x_{0}, y_{0}\right)$, then the value of $\left(x_{0}+y_{0}\right)$ is
22. If $\left(1+x+x^{2}\right)^{8}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{16} x^{16}$ for all values of x , then $\frac{a_{5}}{100}$ is equal to

- Watch Video Solution

23. The value of $\lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{\sin ^{2} x \cos x}$ is equal to

- Watch Video Solution

24. The integral $I=\int \frac{e^{\sqrt{x}} \cos \left(e^{\sqrt{x}}\right)}{\sqrt{x}} d x=f(x)+c$ (where, c is the constant of integration) and
$f\left(\ln \left(\frac{\pi}{4}\right)\right)^{2}=\sqrt{2}$. Then, the number of solutions of $f(x)=2 e(\forall x \in R-\{0\})$ is equal to

(D) Watch Video Solution

25. Let $A=\left[\begin{array}{ccc}1 & 3 \cos 2 \theta & 1 \\ \sin 2 \theta & 1 & 3 \cos 2 \theta \\ 1 & \sin 2 \theta & 1\end{array}\right]$ the maximum value of $|A|$ is equal to k , then $(k-3)^{2}$ is equal to
