© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 80

Mathematics

1. If $f: R \rightarrow R, f(x)=\frac{\alpha x^{2}+6 x-8}{\alpha+6 x-8 x^{2}}$ is onto then $\alpha \in$
A. $(2,14)$
B. $[2,14)$
C. $(2,14]$
D. $[2,14]^{`}$

Answer: A

D Watch Video Solution

2. The compound statement $(p \Leftrightarrow q) \vee(p \Leftrightarrow \sim q)$ is logically equivalent to
A. $p \Leftrightarrow q$
B. $p \vee q$
C. tautology
D. contradiction

- Watch Video Solution

3. The value of $\lim _{x \rightarrow \infty}$

$$
\left[\frac{e^{2}}{\left(1+\frac{2}{x}\right)^{x}}\right]^{\frac{x}{2}} \text { is equal to }
$$

A. e
B. e^{-1}
C. $e^{\frac{1}{2}}$
D. $e^{-\frac{1}{2}}$

Answer: A
4. The mean of n items is \bar{x}. If the first item is increased by n, second by $n-1$ and so on and last by 1 , then the new mean is

$$
\begin{aligned}
& \text { A. } \bar{x}+\frac{n(n+1)(2 n+1)}{6} \\
& \text { B. } \bar{x}+\frac{(n+1)(2 n+1)}{6} \\
& \text { C. } \bar{x}+\frac{n+1}{2} \\
& \text { D. } \bar{x}+\frac{(n+1)}{4}
\end{aligned}
$$

Answer: C

5. If $\left[\sin ^{-1} x\right]^{2}-2\left[\sin ^{-1} x\right]+1 \leq 0 \quad$ (where, [.] represents the greatest integral part of x), then
A. $x \in[\sin 1, \sin 2] \cup[-1,0]$
B. $x \in[-\sin 1,0] \cup[\sin 1,1]$
C. $x \in[\sin 1,1] \cup[-\sin 1,0]$
D. $x \in[-\sin 1, \sin 2]$

Answer: C

- Watch Video Solution

6. If the number of integral of solutions of $x+y+z+w<25$ are.$^{23} C_{\lambda}$, such that
$x>-2, y>1, z \geq 0, w>3$, then the value of λ is
A. 3
B. 5
C. 17
D. 19

Answer: D

- Watch Video Solution

7. From a point $\mathrm{P}(3,3)$ on the circle $x^{2}+y^{2}=18$ two
chords PQ and PR each of he length 2 units are drawn on this circle. Then, the value of the length PM is equal
to (where, M is the midpoint of the line segment joining Q and R)
A. $\frac{1}{3 \sqrt{2}}$ units
B. $\frac{1}{2}$ units
C. $\frac{\sqrt{2}}{3}$ units
D. $\frac{4}{9}$ units

Answer: C

D Watch Video Solution

8. The number of solutions of the equation $(3+\cos x)^{2}=4-2 \sin ^{8} x$ in $[0,9 \pi)$ is equal to
A. 4
B. 5
C. 6
D. 7

Answer: A

D Watch Video Solution

9. If A and B are two events defined on a sample space
with the probabilities
$P(A)=0.5, P(B)=0.69$ and $P\left(\frac{A}{B}\right)=0.5$, thent
the value of $P\left(\frac{A}{A^{c} \cup B^{c}}\right)$ is equal to
A. $\frac{2}{5}$
B. $\frac{3}{13}$
C. $\frac{31}{131}$
D. $\frac{100}{131}$

Answer: C

D Watch Video Solution

10.

$2 x+a y+6 z=8, x+2 y+b z=5$ and $x+y+3 z=4$
be three equations. If these 3 equations are consistent,
then
A. $b=3, a \neq 2$
B. $a=2, b \neq 3$
C. $a \neq 2, b \neq 3$
D. $a \neq 2, b=4$

Answer: B

D Watch Video Solution

11. Let the equation of a line is $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$. An insect starts flying from $P(1,3,2)$ in a straight line meeting the given line at a point $R(a, b, c)$ and then goes to the point Q
$(6,7,5)$ in a straight line such that PR is perpendicular to RQ. Then the least value of $7(a+b+c)$ is equal to
A. 105
B. 45
C. 10
D. 7

Answer: B

D Watch Video Solution

12. Let $A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right] \forall a, b, c, \in\{0,1,2\}$. If A is a singular matrix, then the number of possible matrices

A are
A. 18
B. 27
C. 7
D. 3

Answer: C

D Watch Video Solution

13. $\int\left(\frac{d x}{(x+100) \sqrt{x+99}}\right)=f(x)+c$
then find $f(-99)$
14. The number of tangents that can be drawn to $y=e^{x}$ from $(\pi, 0)$ is
A. 0
B. 1
C. 4
D. 5

Answer: B
15. The area bounded by $y=\left(x^{2}-x\right)^{2}$ with the x axis, between its two relative minima, is A sq, units, the value of 15 A is equal to
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C
(D) Watch Video Solution
16. The curve passing through $P\left(\pi^{2}, \pi\right)$ is such that for a tangent drawn to it at a point Q , the ratio of the y - intercept and the ordinate of Q is $1: 2$. Then, the equation of the curve is
A. $y=\pi x^{2}$
B. $y=\pi \sqrt{x}$
C. $y=\sqrt{x}$
D. $y=\pi^{2} x$

Answer: C

17. The sum of all the values of p for which the lines
$x+y-1=0, p x+4 y+2=0$
$4 x+p y+7=0$ are concurrent is euqal to
A. 0
B. -9
C. -13
D. 3

Answer: C
(D) Watch Video Solution
18. If 11 arithmetic means are inserted between 20 and

10 , the number of integral arithmetic means are
A. 1
B. 6
C. 7
D. 8

Answer: A

19. If $x^{2}+y^{2}=a^{2}$ and $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ intersect at 4 points P, Q, R and S which form a square, then the area
(in sq. units) of the square is

> A. $\frac{144}{25}$
> B. $\frac{25}{4}$
> C. $\frac{15}{2}$
> D. $\frac{576}{25}$

Answer: D

D Watch Video Solution
20. the minimum value of $|8 Z-8|+|2 Z-4|$ exists, when Z is equal to (where, Z is a complex number)
A. 2
B. 1.5
C. 0
D. 1

Answer: D

21. The remainder obtained when 27^{50} is divided by 12 is

D Watch Video Solution

22. Let
$f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{(2 \pi-x)^{2}} \cdot \frac{\tan ^{2} x}{\ln \left(1+4 \pi^{2}-4 \pi x+x^{2}\right)} & : x \neq 2 \pi \\ \lambda & : x=2 \pi\end{array}\right.$ is continuous at $x=2 \pi$, then the value of λ is equal to

D Watch Video Solution

23. Let $\vec{V}(\theta)=(\cos \theta+\sec \theta), \widehat{a}+(\cos \theta-\sec \theta)$
where \hat{a} and \hat{b} are unit vectors and the angle between
\widehat{a} and \vec{g} is 60°, then the minimum value of equal to

D Watch Video Solution

24. If $\lim _{n \rightarrow \infty} \Sigma_{r=1}^{2 n} \frac{3 r^{2}}{n^{3}} e^{\frac{r^{3}}{n^{3}}}=e^{a}-e^{b}$, then $a+b$ is equal to

D Watch Video Solution

25. Let PQ be the focal chord of the parabola $y^{2}=4 x$.

If the centre of the circle having PQ as its diameter lies on the line $y=\frac{4}{\sqrt{5}}$, then the radius (in units) is equal to

