

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 81

Mathematics

1. If the function f(x) is symmetric about the line x = 3,

then the value of the integral $I=\int_{-2}^8 rac{f(x)}{f(x)+f(6-x)} dx$ is

A. 0

B. 5

C. 10

D. 16

Answer: B

Watch Video Solution

2. The normal to the parabola $y^2=8ax$ at the point (2, 4)

meets the parabola again at eh point

A.
$$(-18, -12)$$

B.(-18, 12)

C. (18, 12)

D.
$$(18, -12)$$

Answer: D

3. The number of values of $x \in [-2\pi, 2\pi]$ which satisfy

the equation $\operatorname{cosec} \mathrm{x} = 1 + \operatorname{cot} x$ is equal to

A. 0

B. 2

C. 4

D. 6

Answer: B

4. If the integral
$$I = \int \frac{x\sqrt{x} - 3x + 3\sqrt{x} - 1}{x - 2\sqrt{x} + 1} dx = f(x) + C$$
 (where, $x > 0$ and C is the constant of integration) and $f(1) = \frac{-1}{3}$, then the value of $f(9)$ is equal to

B. 6

C. 9

D. 12

Answer: C

5. The number of ways of arranging the letters AAAAA, BBB, CCC, D, EE and F in a row, if the letters B are separated from one another, is equal to

A.
$$\frac{13!}{5!3!3!2!}$$

B. $\frac{14!}{3!3!2!}$
C. $\frac{15!}{(3!)^2 2!5!}$
D. $.^{13} C_3 \times \frac{12!}{5!3!2!}$

Answer: D

6. If $a,b,c\in R^+$ such that a+b+c=27, then the maximum value of $a^2b^3c^4$ is equal to

A. 2^8 . 3^{10} B. 2^9 . 3^{12} C. 2^{10} . 3^{12} D. 2^{11} . 3^{13}

Answer: C

> Watch Video Solution

7. Find the degrees and radians the angle between the hour hand and the minute hand of a clock at half past

three.

A. $90\,^\circ$

B. 80°

C. 75°

D. 60°

Answer: C

Watch Video Solution

8. If
$$f(x)=2\sin x-x^2$$
, then in $x\in[0,\pi]$

A. f(x) has no local maximum

B. f(x) has one local minimum

C. f(x) has 2 local maxima

D. f(x) has one local maximum

Answer: D

Watch Video Solution

9. 15 coins are tossed. If the probability of getting at least 8 heads is equal to p, then $\frac{8}{p}$ is equal to

A. 2

B.4

C. 8

D. 16

Answer: D

Watch Video Solution

10. A normal line with positive direction cosines to the plane P makes equal angles with the coordinate axis. The distance of the point A(1, 2, 3) from the line $\frac{x-1}{1} = \frac{y+2}{1} = \frac{z-3}{2}$ measured parallel to the plane P is equal to

A. 3 units

B. $\sqrt{13}$ units

C. $\sqrt{14}$ units

D. $2\sqrt{5}$ units

Answer: C

11. Let $A = [a_{ij}]_{3 \times 3}$ be a scalar matrix whose elements are the roots of the equation $x^9 - 15x^8 + 75x^7 - 125x^6 = 0$. If |A. adjA| = k, then the value of k is equal to

A. 5^{12}

 $\mathsf{B.}\,5^9$

 $C. 3^{12}$

D. 3^9

Answer: B

Watch Video Solution

12. For three non - zero vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} , if $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 4$, then $\begin{bmatrix} \overrightarrow{a} \times (\overrightarrow{b} + 2\overrightarrow{c}) & \overrightarrow{b} \times (\overrightarrow{c} - 3\overrightarrow{a}) & \overrightarrow{c} \times (3\overrightarrow{a} + \overrightarrow{b}) \end{bmatrix}$

is equal to

A. 12

B. 16

C. 84

D. 144

Answer: D

Watch Video Solution

13. Let
$$f: [-1,1] \Rightarrow B$$
 be a function defined as $f(x) = \cot^{-1}\left(\cot\left(rac{2x}{\sqrt{3}(1+x^2)}
ight)
ight)$. If f is both one -

one and onto, then B is the interval

A.
$$\left(0, \frac{\pi}{3}\right)$$

B. $\left[0, \frac{2\pi}{3}\right)$
C. $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$
D. $\left(\frac{\pi}{3}, \pi\right)$

Answer: C

14. If p, q are r are three logical statements, then the truth value of the statement $(p \wedge q) \lor (\neg q \rightarrow r)$, where p is true, is

A. True if q is false

B. False if q is false

C. True if q is true

D. False if q is true

Answer: C

15. If $f(x) = \begin{cases} rac{e^{[2x]+2x+1}-1}{[2x]+2x+1} & : x \neq 0 \ 1 & : x = 0 \end{cases}$, then (where [.]

represents the greatest integer function)

A.
$$\lim_{x o 0^+} f(x) = 1$$

B.
$$\lim_{x
ightarrow 0^-} f(x) = e-1$$

- C. f(x) is continuous at x = 0
- D. f(x) is discontinuous at x = 0

Answer: D

16. The set $(A \cup B \cup C) \cap (A \cap B' \cap C')$ ' is equal to

A. $A\cap B$

B. $A\cap C$ '

 $\mathsf{C}.\,B\cup C$

 $\mathsf{D}.\,B\cap C$

Answer: C

Watch Video Solution

17. Let the circumcentre of ΔABC is S(-1,0) and the midpoints of the sides AB and AC are E(1, -2) and F(-2, -1) respectively, then the coordinates of A are

A. (0, -3)

B.(0,3)

C. (-3, 0)D. (3, 0)

Answer: B

Watch Video Solution

18. For a ΔABC the vertices are A(0, 3), B(0, 12) and C(x, 0). If the circumcircle of ΔABC touches the x - axis, then the area (in sq. units) of the ΔABC is

A. 36

B. 27

C. 30

D. 24

Answer: B

Watch Video Solution

19. The solution of the differential equation
$$\left(\frac{dy}{dx}\right)^4 - \left(\frac{dy}{dx}\right)^2 - 2 = 0$$
 is $y = \pm \sqrt{\lambda}x + C$ (where,

C is an arbitrary constant). Then, λ^2 is equal to

A. 2

B.4

C. 8

D. 16

Answer: B

20. For the complex number z satisfying the condition $\left|z + \frac{2}{z}\right| = 2$, the maximum value of |z| is A. $\sqrt{3} - 1$ B. $\sqrt{3} + 1$ C. $\sqrt{2} + \sqrt{3}$ D. $\sqrt{3}$

Answer: B

21. If the area bounded by $y \leq e - |x - e| \; ext{ and } \; y \geq 0$ is A

sq. units, then $\log_e(A)$ is equal is

22. If the middle term in the expansion of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$, then the number of values of x in $[0, 2\pi]$ is equal to

Watch Video Solution

23. Let
$$A = egin{bmatrix} 2 & -1 & 1 \ -2 & 3 & -1 \ -4 & 4 & -x \end{bmatrix}$$
 be a matrix. If $A^2 = A,$

then the value of x is equal to

24. The value of $\lim_{x \to 0} (\cos x + \sin x)^{\frac{1}{x}}$ is equal to to (take e = 2.71)

25. A tangent of slope 2 of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{1} = 1$ passes through (-2, 0). Then, three times the square of the eccentricity of the ellipse is equal to

