© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 83

Mathematics

1. The last two digits of the number $(23)^{14}$ are 01 b .03 c .09 d . none of these
A. 01
B. 03
C. 09
D. 17

(D) Watch Video Solution

2. Let \vec{a} and \vec{b} are unit vectors such that $|\vec{a}+\vec{b}|=\frac{3}{2}$, then the value of $(2 \vec{a}+7 \vec{b}) \cdot(4 \vec{a}+3 \vec{b}+2020 \vec{a} \times \vec{b})$ is equal to
A. $\frac{133}{4}$
B. 133
C. 30
D. 120

Answer: A

- Watch Video Solution

3. Set of all the vectors of x saltsfying the inequality $\sqrt{x^{2}-7 x+6}>x+2$ is
A. $x \in\left(-\infty, \frac{2}{11}\right)$
B. $x \in\left(\frac{2}{11}, \infty\right)$
C. $x \in(-\infty, 1] \cup[6, \infty)$
D. $x \in[6, \infty)$

Answer: A

- Watch Video Solution

4. If the value of of the integral $I=\int_{0}^{2 \pi} \operatorname{sgn}\left(e^{x}\right) d x$ is equal to $k \pi$, then the smallest prime number greatest than 2 k is (where, $\operatorname{sgn}(\mathrm{x})$ represents the signum functiono fx)
A. 3
B. 5
C. 7
D. 11

Answer: B

5. Let A lies on $3 x-4 y+1=0$, B lies on $4 x+3 y-7=0$ and C is $(-2,5)$. If $A B C D$ is a rhombus, then the locus of D is a conic whose length of the latus rectum is equal to
A. 10 units
B. 15 units
C. 5 units
D. 20 units

Answer: A

- Watch Video Solution

6. If $f(x)=\frac{x}{x-1}$, then the points of discontinuity of the function $f^{15}(x)$, where $f^{n}=f o f \ldots \ldots \ldots \ldots$ of (n times), are
A. $x=2,1$
B. $x=0,1$
C. $x=1,2,0$
D. continuous everywhere except $x=1$

Answer: D

- Watch Video Solution

7. All the students of a class performed poorly in physics. The teacher decided to give grace marks of 15 to the entire class. Which of the following statistical measures will not change even after the grace marks were given?
A. median
B. mode
C. variance
D. mean

Answer: C

- Watch Video Solution

8. Two vertical poles AL and BM of height 4 m and 16 m respectively stand apart on a horizontal plane. If A, B be the feet of the poles and $A M$ and $B L$ intersect at P, then the height of P from the horizontal plane is equal to
A. 3.2 m
B. 2.5 m
C. 4 m
D. 8 m

Answer: A

9. Let $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ where $a, b \in N$. The number of matrices B such that $A B=B A$, is equal to
A. 0
B. 1
C. 2
D. infinite

Answer: D

- Watch Video Solution

10. A line makes an angle θ with the x-axis and the y-axis. If it makes an angle α with the z - axis such that $\sin ^{2} \alpha=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{3}{4}$
C. $\frac{3}{5}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

11. The number of ways in which the letters of the word 'ARRANGE' can be arranged so that two A's are together is
A. 160
B. 200
C. 360
D. 900

Answer: C

12. When two dice are thrown n number of times, the probability of getting a doublet atleast once in greater than 80% and the least value of n is λ, then the value of λ is equal to
A. 62
B. 71
C. 80
D. 91

Answer: D

- Watch Video Solution

13. Consider the integrals $I_{1}=\int e^{x^{2}} \cos x d x$ and $I_{2}=\int x e^{x^{2}} \sin x d x$. Then $I_{1}+2 I_{2}$ simplifies to (Where, c is the constant of integration)
A. $e^{x} \sin x+c$
B. $e^{x^{2}} \cos x+c$
C. $2 e^{x^{2}} \sin x+c$
D. $e^{x^{2}} \sin x+c$

Answer: D

- Watch Video Solution

14.

$\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta-\cos \theta}-\frac{\cos \theta}{\sqrt{1+\cot ^{2} \theta}}-2 \tan \theta \cot \theta=-1(\forall \theta \in[0,2 \pi]$, then
A. $\theta \in\left(0, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4}\right\}$
В. $\theta \in\left(\frac{\pi}{2}, \pi\right)-\left\{\frac{3 \pi}{4}\right\}$
C. $\theta \in\left(\pi, \frac{3 \pi}{2}\right)-\left\{\frac{5 \pi}{4}\right\}$
D. $\theta \in(0, \pi)-\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}$

Answer: D

15. The area bounded by $y+x^{2} \leq 4 x$ and $y \geq 3$ is k sq. units, then 3 k is equal to
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

16. The solution of the differential equation $2 \sqrt{x} e^{\sqrt{x}} d y+e^{\sqrt{x}} y d x=\sqrt{x} \sin x d x$ is (where, c is arbitrary constant)
A. $2 y e^{\sqrt{x}}+\sin x=c$
B. $y \sin x=e^{\sqrt{x}}+c$
C. $y e^{\sqrt{x}}+\sin x=c$
D. $2 y e^{\sqrt{x}}+\cos x=c$

Answer: D

- Watch Video Solution

17. The sum of all the values of λ for which the set $\left\{(x, y): x^{2}+y^{2}-6 x+4 y=12\right\} \cap\{(x, y): 4 x+3 y \lambda\} \quad$ contains exactly one element is
A. 31
B. -31
C. 12
D. -19

Answer: C

18. The range of the function $f(x)=\frac{\tan (\pi[x+1])}{x^{4}+1}$ (where, $[$.$] is the$ greatest integer function) is
A. $[0,1]$
B. $[-1,1]$
C. $\{0\}$
D. $(-\infty, \infty)$

Answer: C

- Watch Video Solution

19. From a point on the line $x-y+2-0$ tangents are drawn to the hyperbola $\frac{x^{2}}{6}-\frac{y^{2}}{2}=1$ such that the chord of contact passes through a fixed point (λ, μ). Then, $\mu-\lambda$ is equal to
A. 2
B. 3
C. 4
D. 5

Answer: A

D Watch Video Solution

20. Let $\omega(\omega \neq 1)$ is a cube root of unity, such that $\left(1+\omega^{2}\right)^{8}=a+b \omega$ where a, b in R , then $|a+b|$ is equal to
A. 1
B. 3
C. 0
D. 2

Answer: D

21.

For
the
$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($
if the $7^{\text {th }}$ term is K , then $\frac{K}{4}$ is equal to

- Watch Video Solution

22. The value of $\lim _{x \rightarrow 2} \Sigma_{r=1}^{7} \frac{x^{r}-2^{r}}{2 r(x-2)}$ is equal to

- Watch Video Solution

23. If $f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$
$f\left(\frac{\pi}{6}\right)+f\left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{2}\right)+f\left(\frac{2 \pi}{3}\right)+f\left(\frac{5 \pi}{6}\right)+f(\pi)+\ldots \ldots+f\left(\frac{53 \pi}{6}\right.$ is equal to
24. The minimum possible distnace between the points $A(a, a-1)$ and $B\left(b, b^{2}+b+1\right) \forall a, b \in R$ is D units, then the value of D^{2} is

- Watch Video Solution

25. Let $2 a+2 b+c=0, l_{1}$ and l_{2} are straight lines of the family $a x+b y+c=0$ which are at 1 unit distance from the point $(1,1)$, then the area (in sq. units) bounded by l_{1}, l_{2} and coordinate axes is

- Watch Video Solution

