©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 89

Mathematics

1. Let $f: R \rightarrow R$ be a function such that

$$
f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)}{3}, f(0)=0 \text { and } f^{\prime}(0)=3
$$

,then
A. $f(x)$ is a quadratic function
B. $f(x)$ is continuous but not differentiable
C. $f(x)$ is differentiable in R
D. $f(x)$ is bounded in R

Answer: C

- Watch Video Solution

2. The value of definite integral
$I=\int_{\ln \left(\frac{\sqrt{3}}{2}\right)}^{\ln \left(\frac{2}{\sqrt{3}}\right)} \ln .\left(\frac{2-\tan ^{7} x}{2+\tan ^{7} x}\right) d x$ is equal to
A. $\ln 4$
B. $\ln 2$
C. 0
D. $\ln \left(\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

3. A ladder rests against a vertical wall at an angle α to the horizontal. If the foot is pulled away through a distance 2 m , then it slides a distance 5 m down the wall, finally making an angle β with the horizontal. The value of $\tan \left(\frac{\alpha+\beta}{2}\right)$ is equal to
A. $\frac{2}{5}$
B. $\frac{5}{2}$
C. 10
D. None of these

Answer: A

- Watch Video Solution

4. If $x \in(0,1)$, then the value of
$2 \tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+2 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is equal to
A. $-\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{2}$
D. π

Answer: D

- Watch Video Solution

5. Let $O A B C$ be a regular tetrahedron with side length unity, then its volume (in cubic units) is
A. $3 \sqrt{2}$
B. $6 \sqrt{2}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{6 \sqrt{2}}$

Answer: D

- Watch Video Solution

6.

Let
$A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ and $D\left(x_{4}, y_{4}\right)$ are
four points which are at equal distance from the
lines $3 x-4 y+1=0$ and $8 x+6 y+1=0$, The
mean of the coordinates of the centroids of
$\triangle A B C, \triangle B C D, \triangle C D A$ and $\triangle D A B$ are
A. $\left(\frac{-4}{5}, \frac{2}{5}\right)$
B. $\left(\frac{-1}{5}, \frac{1}{10}\right)$
C. $\left(\frac{-3}{5}, \frac{3}{10}\right)$
D. $\left(\frac{-4}{15}, \frac{2}{15}\right)$

Answer: B
7. If a, b, c are sides of the triangle $A B C$ and $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0, \quad$ then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ is equal to

$$
\begin{aligned}
& \text { A. }-\frac{3}{2} \\
& \text { B. } \frac{3}{2} \\
& \text { C. } \frac{3 \sqrt{3}}{2} \\
& \text { D. }-1
\end{aligned}
$$

Answer: A
8. The radius of circle, touching the parabola $y^{2}=8 x$ at $(2,4)$ and passing through $(0,4)$, is
A. 1
B. 2
C. 4
D. 3

Answer: C

- Watch Video Solution

9. Six married couple are sitting in a room. Number
of ways in which 4 people can be selected so that
there is exactly one married couple among the four is:
A. 276
B. 600
C. 840
D. 240

Answer: D

- Watch Video Solution

10. A real value of a, for which the sum of the roots
of the equation $x^{2}-2 a x+2 a-1=0$ is equal to the sum of the square of its roots, is
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. 2

Answer: A

- Watch Video Solution

11. Sum of the first hundred numbers common to the arithmetic progression $12,15,18, \ldots$. and 17 ,

$21,25, \ldots$. Is

A. 56100
B. 65100
C. 61500
D. 51600

Answer: C

- Watch Video Solution

12. $\frac{\sin (9 \pi)}{14} \frac{\sin (11 \pi)}{14} \frac{\sin (13 \pi)}{14}$ is equal to

> A. $\frac{1}{64}$
> B. $-\frac{1}{64}$
> C. $\frac{1}{8}$
> D. $-\frac{1}{8}$

Answer: C

- Watch Video Solution

13. The equation of the projection line of the line

$$
\frac{x+1}{2}=\frac{y+1}{-1}=\frac{z+3}{4} \quad \text { on } \quad \text { the plane }
$$

$$
x+2 y+z=6 \text { is }
$$

$$
\text { A. } \frac{x-1}{4}=\frac{y-3}{7}=\frac{z-1}{10}
$$

$$
\text { B. } \frac{x-1}{-4}=\frac{y+3}{7}=\frac{z-1}{10}
$$

$$
\text { C. } \frac{x-1}{4}=\frac{y-3}{-7}=\frac{z+1}{10}
$$

$$
\text { D. } \frac{x+3}{4}=\frac{y-2}{7}=\frac{z-7}{-10}
$$

Answer: C

$A:(0, a), B:(-2,0)$ and $C:(1,1)$ form an obtuse angle triangle (obtuse angled at angle A), then sum of all the possible integral values of a is
A. 0
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

15. Let A and B are square matrices of order 3 such
that

$$
A B^{2}=B A \text { and } B A^{2}=A B
$$

$(A B)^{2}=A^{3} B^{n}$, then m is equal to
A. 3
B. 4
C. 5
D. 7

Answer: D
(D) Watch Video Solution
16. A hyperbola has foci $(4,2),(2,2)$ and it passess
through $P(2,4)$. The eccentricity of the hyperbola
is
A. $\tan \frac{3 \pi}{10}$
B. $\tan \frac{5 \pi}{12}$
C. $\tan \cdot \frac{\pi}{3}$
D. $\tan \cdot \frac{3 \pi}{8}$

Answer: D

- Watch Video Solution

17. If $I_{n}=\int x^{n} e^{6 x} d x$, then the expression
$6 I_{10}+10 I_{9}$ simplifies to (where, c is the constant of integration)

> A. $x^{10} e^{5 x}+c$
> B. $x^{10} e^{6 x}+c$
> C. $x^{9} e^{5 x}+c$
> D. $x^{10} e^{10 x}+c$

Answer: B
18. In an experiment with 10 observations on x the following results are available
$\Sigma x^{2}=354$ and $\Sigma x=58$. If one observation 8
that was found to be wrong and was replaced by the corrected value 10 , then the corrected variance is
A. 5
B. 3
C. 4
D. 6
19. If the area bounded by the curves $x^{2}+y \leq 2$ and $y \geq x$ is $\frac{k}{2}$ sq. units, then 2 k is equal to
A. 9
B. 27
C. 18
D. 32

Answer: C
20. The solution of the differential equation $\frac{d x}{d y}=\frac{x^{2}}{e^{y}-x}(\forall x>0) \quad$ is $\quad \lambda x+2 c x^{2} e^{y}=e^{y}$
(where, c is an arbitrary constant). Then, λ is euqal to
A. 2
B. 4
C. $\frac{1}{2}$
D. $\frac{1}{4}$

21.
 The
 vlaue
 of
 is

$\lim _{x \rightarrow \frac{x}{2}}\left(1^{\frac{1}{\cos ^{2} x}}+2^{\frac{1}{\cos ^{2} x}}+\ldots \ldots \ldots \ldots \ldots .+10^{\frac{1}{\cos ^{2} x}}\right)$
equal to

- Watch Video Solution

22. A fair coin is tossed repeatedly until two consecutive heads are obtained. If the probability that 2 consecutive heads occur on fourth and fifth toss is p , then $\frac{30}{p}$ is equal to
23. Let λ denote the number of terms in the expansion of
$\left(1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}\right)^{20}$. If unit's place and ten's place digits in 3^{λ} are O and T , then $O+T$ is equal to

- Watch Video Solution

24. Let Z be a complex number satisfying the relation $Z^{3}+\frac{4(\bar{Z})^{2}}{|Z|}=0$. If the least possible
argument of Z is $-k \pi$, then k is equal to (here, $\arg Z \in(-\pi, \pi])$

- Watch Video Solution

25. If the product of height and square of the radius of the greatest cone obtained by rotating a
right - angle triangle of hypotenuse 2 meters about
a side is $\frac{k}{3 \sqrt{3}}$, then k is equal to

- Watch Video Solution

