

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 91

Mathematics

1. If x, y and z are the roots of the equation
$$2t^{3} - (\tan[x+y+z]\pi)t^{2} - 11t + 2020 = 0, \text{ then } \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix} \text{ is equal to}$$

(where, [x] denotes the greatest integral value less than or equal to x)

A. 20

 $\mathsf{B.}-10$

C. 0

D. 1

Answer: C

2. Let
$$f(x)=\minigg\{\sqrt{4-x^2},\sqrt{1+x^2}igg\} orall, x\in [-2,2]$$
 then the

number of points where f(x) is non - differentiable is

A. 1

B. 0

C. 4

D. 2

Answer: C

3. The probability of a problem being solved by 3 students independently

are $\frac{1}{2}, \frac{1}{3}$ and α respectively. If the probability that the problem is solved

in P(S), then P(S) lies in the interval (where, $lpha \in (0,1)$)

$$A. \left(0, \frac{1}{2}\right)$$
$$B. \left(\frac{1}{3}, \frac{1}{2}\right)$$
$$C. \left(\frac{2}{3}, 1\right)$$
$$D. \left(\frac{1}{3}, \frac{2}{3}\right)$$

Answer: C

Watch Video Solution

4. Consider a matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
. If $6A^{-1} = aA^2 + bA + cI$,

where $a, b, c \in ~ ext{and}~I$ is an identity matrix, then a+2b+3c is equal to

A. 10

B. - 10

C. 8

D. 0

Answer: B

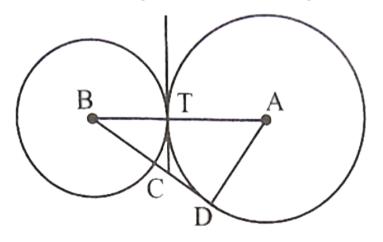
5. If the value of the sum $29(.^{30}C_0) + 28(.^{30}C_1) + 27(.^{30}C_2) + \dots + 1(.^{30}C_{28}) + 0.$ $(.^{30}C_{29})$ is equal to $K.2^{32}$, then the value of K is equal to

A. 7

B. 14

C. $\frac{5}{2}$ D. $\frac{7}{2}$

Answer: D


6. The value of the integral
$$I=\int_{rac{1}{\sqrt{3}}}^{\sqrt{3}}rac{dx}{1+x^2+x^3+x^5}$$
 is equal to

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{6}$

Answer: C

7. Two circles with centres at A and B touch each other externally at T. Let BD is the tangent at D and TC is a common tangent. If AT has length 3 units and BT has length 2 units, then the length (in units) of CB is

A.
$$\frac{4}{3}$$

B. $\frac{5}{2}$
C. $\frac{5}{3}$
D. $\frac{7}{4}$

Answer: B

8. Let $a_n = 16, 4, 1, \ldots$ be a geometric sequence. The value of $\sum_{n=1}^{\infty} \sqrt[n]{P_n}$, where P_n is the product of the first n terms, is equal to.

A. 8

B. 16

C. 32

D. 64

Answer: C

9. A curve in the first quadrant is such that the slope of OP is twice the slope of the tangent drawn at P to the curve, where O is the origin and P is any general point on the curve. If the curve passes through (4, 2), then its equation is

A.
$$y=x^2-14$$

$$\mathsf{B}.\,y^2=x$$

$$\mathsf{C}.\, y = x^3 - 62$$

$$\mathsf{D}.\,y=\sin(x-4)+2$$

Answer: B

10. There are six periods in each working day of the school. In how many

ways can one arrange 5 subjects such that each subject is allowed at least

one period?

A. 210

B. 1800

C. 360

D. 120

Answer: B

Watch Video Solution

11. If the maximum area bounded by $y^2 = 4x$ and the line $y = mx(\, orall m \in [1,3])$ is k square units, then the smallest prime number greater than 3k is

A. 3

B. 5

C. 7

Answer: D

Watch Video Solution

12. The indefinite integral $\int\!\!e^{e^x} igg(rac{x e^x . \ln x + 1}{x} igg) dx$ simplifies to (where, c

is the constant of integration)

A. $x \ln(\ln x) + c$

 $\mathsf{B.}\,e^{e^x}+c$

$$\mathsf{C}.\,\frac{e^{e^x}}{x}+c$$

 $\mathsf{D}.\, e^{e^x}.\, {\ln x} + c$

Answer: D

13. The line through the points (m, -9) and (7, m) has slope m. Then,

the x - intercept of this line is

A. −18 B. −6 C. 6

D. 18

Answer: C

Watch Video Solution

14. All the values of m for which both roots of the equation $x^2-2mx+m^2-1=0$ are greater than -2 but less than 4, lie in the interval

A. 0

B. 1

C. 2

D. more than 2

Answer: D

Watch Video Solution

15. The locus of the midpoint of the chords of the hyperbola $\frac{x^2}{25} - \frac{y^2}{36} = 1$ which passes through the point (2, 4) is a hyperbola,

whose transverse axis length (in units) is equal to

A.
$$\frac{16}{5}$$

B. $\frac{4}{3}$
C. $\frac{8}{5}$
D. $\frac{61}{25}$

Answer: A

16. The real part of the complex number z satisfying $|z-1-2i|\leq 1$ and having the least positive argument, is

A.
$$\frac{4}{5}$$

B. $\frac{8}{5}$
C. $\frac{6}{5}$
D. $\frac{7}{5}$

Answer: B

17. The mean and variance of 10 observations are found to be 10 and 5 respectively. On rechecking it is found that an observation 5 is incorrect. If the incorrect observation is replaced by 15, then the correct variance is

C. 9

D. 4

Answer: D

Watch Video Solution

18. The value of
$$\lim_{x
ightarrow\pi} rac{ an(\pi\cos^2 x)}{\sin^2(2x)}$$
 is equal to

A. 1

 $\mathsf{B.}\,\pi$

C.
$$-rac{\pi}{4}$$

D. $rac{\pi}{2}$

Answer: C

19. If $f(x)=rac{x^2-\left[x^2
ight]}{x^2-\left[x^2-2
ight]}$ (where, $[.\,]$ represents the greatest integer

part of x), then the range of f(x) is

- A. [0, 1)
- B.(-1,1)
- $\mathsf{C}.\left(0,\infty
 ight)$
- $\mathsf{D}.\left[0,\frac{1}{3}\right)$

Answer: D

Watch Video Solution

20. If the angle between the plane x - 3y + 2z = 1 and the line $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-1}{-3}$ is θ , then sec 2θ is equal to A. $\frac{107}{11}$ B. $\frac{49}{48}$ C. $\frac{100}{9}$

D.
$$\frac{87}{79}$$

Answer: B

Watch Video Solution

21. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are three vectors such that
 $3\overrightarrow{a} + 4\overrightarrow{b} + 6\overrightarrow{c} = \overrightarrow{0}, |\overrightarrow{a}| = 3, |\overrightarrow{b}| = 3$ and $|\overrightarrow{c}| = 4$, then the value
of $-864\left(\frac{\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}}{6}\right)$ is equal to
Watch Video Solution

22. If the number of principal solutions of the equation $\tan(7\pi\cos x)=\cot(7\pi\sin x)$ is k, then $\frac{k}{5}$ is equal to

23. The number of real values of x that satisfies the equation $x^4 + 4x^3 + 12x^2 + 7x - 3 = 0$ is

Watch Video Solution

24. If the normals of the parabola $y^2=4x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^2+(y+2)^2=r^2$, then the value of r^4 is equal to

Watch Video Solution

25. A man is walking towards a vertical pillar in a straight path at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 30° . After walking for $5(\sqrt{3}+1)$ minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 45° . Then the time taken (in minutes) by him, to reach from B to the pillar, is (take $\sqrt{3} = 1.73$)

