© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 91

Mathematics

1. If x, y and z are the roots of the equation
$2 t^{3}-(\tan [x+y+z] \pi) t^{2}-11 t+2020=0$, then $\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|$ is equal to
(where, $[x]$ denotes the greatest integral value less than or equal to x)
A. 20
B. -10
C. 0
D. 1

- Watch Video Solution

2. Let $f(x)=\min \left\{\sqrt{4-x^{2}}, \sqrt{1+x^{2}}\right\} \forall, x \in[-2,2]$ then the number of points where $f(x)$ is non-differentiable is
A. 1
B. 0
C. 4
D. 2

Answer: C

D Watch Video Solution

3. The probability of a problem being solved by 3 students independently are $\frac{1}{2}, \frac{1}{3}$ and α respectively. If the probability that the problem is solved
in $\mathrm{P}(\mathrm{S})$, then $\mathrm{P}(\mathrm{S})$ lies in the interval (where, $\alpha \in(0,1)$)
A. $\left(0, \frac{1}{2}\right)$
B. $\left(\frac{1}{3}, \frac{1}{2}\right)$
C. $\left(\frac{2}{3}, 1\right)$
D. $\left(\frac{1}{3}, \frac{2}{3}\right)$

Answer: C

- Watch Video Solution

4. Consider a matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 0 & -3 & 0 \\ 1 & 1 & 1\end{array}\right]$. If $6 A^{-1}=a A^{2}+b A+c I$,
where $a, b, c \in$ and I is an identity matrix, then $a+2 b+3 c$ is equal to
A. 10
B. -10
C. 8
D. 0

D Watch Video Solution

5. If
the
value
of
the
sum
$29\left({ }^{30} C_{0}\right)+28\left(\cdot{ }^{30} C_{1}\right)+27\left(\cdot{ }^{30} C_{2}\right)+\ldots+1\left(.{ }^{30} C_{28}\right)+0 \cdot\left(.{ }^{30} C_{29}\right)$ is equal to $K .2^{32}$, then the value of K is equal to
A. 7
B. 14
C. $\frac{5}{2}$
D. $\frac{7}{2}$

Answer: D

Watch Video Solution
6. The value of the integral $I=\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{d x}{1+x^{2}+x^{3}+x^{5}}$ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{6}$

Answer: C

- Watch Video Solution

7. Two circles with centres at A and B touch each other externally at T. Let BD is the tangent at D and TC is a common tangent. If AT has length 3 units and $B T$ has length 2 units, then the length (in units) of $C B$ is

A. $\frac{4}{3}$
B. $\frac{5}{2}$
C. $\frac{5}{3}$
D. $\frac{7}{4}$

Answer: B

- Watch Video Solution

8. Let $a_{n}=16,4,1, \ldots \ldots \ldots$. . be a geometric sequence. The value of $\Sigma_{n=1}^{\infty} \sqrt[n]{P_{n}}$, where P_{n} is the product of the first n terms, is equal to.
A. 8
B. 16
C. 32
D. 64

Answer: C

9. A curve in the first quadrant is such that the slope of $O P$ is twice the slope of the tangent drawn at P to the curve, where O is the origin and P is any general point on the curve. If the curve passes through $(4,2)$, then its equation is
A. $y=x^{2}-14$
B. $y^{2}=x$
C. $y=x^{3}-62$
D. $y=\sin (x-4)+2$

Answer: B

- Watch Video Solution

10. There are six periods in each working day of the school. In how many ways can one arrange 5 subjects such that each subject is allowed at least

one period?

A. 210
B. 1800
C. 360
D. 120

Answer: B

- Watch Video Solution

11. If the maximum area bounded by $y^{2}=4 x$ and the line $y=m x(\forall m \in[1,3])$ is k square units, then the smallest prime number greater than 3 k is
A. 3
B. 5
C. 7
D. 11

Answer: D

- Watch Video Solution

12. The indefinite integral $\int e^{e^{x}}\left(\frac{x e^{x} \cdot \ln x+1}{x}\right) d x$ simplifies to (where, c is the constant of integration)
A. $x \ln (\ln x)+c$
B. $e^{e^{x}}+c$
C. $\frac{e^{e^{x}}}{x}+c$
D. $e^{e^{x}} \cdot \ln x+c$

Answer: D

- Watch Video Solution

13. The line through the points $(m,-9)$ and $(7, m)$ has slope m. Then, the x - intercept of this line is
A. -18
B. -6
C. 6
D. 18

Answer: C

- Watch Video Solution

14. All the values of m for which both roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less than 4 , lie in the interval
A. 0
B. 1
C. 2
D. more than 2

Answer: D

- Watch Video Solution

15. The locus of the midpoint of the chords of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{36}=1$ which passes through the point $(2,4)$ is a hyperbola, whose transverse axis length (in units) is equal to
A. $\frac{16}{5}$
B. $\frac{4}{3}$
C. $\frac{8}{5}$
D. $\frac{61}{25}$

Answer: A

16. The real part of the complex number z satisfying $|z-1-2 i| \leq 1$ and having the least positive argument, is
A. $\frac{4}{5}$
B. $\frac{8}{5}$
C. $\frac{6}{5}$
D. $\frac{7}{5}$

Answer: B

- Watch Video Solution

17. The mean and variance of 10 observations are found to be 10 and 5 respectively. On rechecking it is found that an observation 5 is incorrect. If the incorrect observation is replaced by 15 , then the correct variance is
A. 7
B. 8
C. 9
D. 4

Answer: D

- Watch Video Solution

18. The value of $\lim _{x \rightarrow \pi} \frac{\tan \left(\pi \cos ^{2} x\right)}{\sin ^{2}(2 x)}$ is equal to
A. 1
B. π
C. $-\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: C
19. If $f(x)=\frac{x^{2}-\left[x^{2}\right]}{x^{2}-\left[x^{2}-2\right]}$ (where, [.] represents the greatest integer part of x), then the range of $f(x)$ is
A. $[0,1)$
B. $(-1,1)$
C. $(0, \infty)$
D. $\left[0, \frac{1}{3}\right)$

Answer: D

- Watch Video Solution

20. If the angle between the plane $x-3 y+2 z=1$ and the line $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z-1}{-3}$ is θ, then $\sec 2 \theta$ is equal to
A. $\frac{107}{11}$
B. $\frac{49}{48}$
C. $\frac{100}{9}$
D. $\frac{87}{79}$

Answer: B

(Watch Video Solution

21. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $3 \vec{a}+4 \vec{b}+6 \vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=3$ and $|\vec{c}|=4$, then the value of $-864\left(\frac{\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}}{6}\right)$ is equal to

- Watch Video Solution

22. If the number of principal solutions of the equation $\tan (7 \pi \cos x)=\cot (7 \pi \sin x)$ is k, then $\frac{k}{5}$ is equal to

- Watch Video Solution

23. The numberof real values of x that satisfies the equation $x^{4}+4 x^{3}+12 x^{2}+7 x-3=0$ is

- Watch Video Solution

24. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$, then the value of r^{4} is equal to

- Watch Video Solution

25. A man is walking towards a vertical pillar in a straight path at a uniform speed. At a certain point A on the path, he observes that the angle of elevationof the top of the pillar is 30°. After walking for $5(\sqrt{3}+1)$ minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 45°. Then the time taken (in minutes) by him, to reach from B to the pillar, is (take $\sqrt{3}=1.73)$
